1,315 research outputs found
Instant restore after a media failure
Media failures usually leave database systems unavailable for several hours
until recovery is complete, especially in applications with large devices and
high transaction volume. Previous work introduced a technique called
single-pass restore, which increases restore bandwidth and thus substantially
decreases time to repair. Instant restore goes further as it permits read/write
access to any data on a device undergoing restore--even data not yet
restored--by restoring individual data segments on demand. Thus, the restore
process is guided primarily by the needs of applications, and the observed mean
time to repair is effectively reduced from several hours to a few seconds.
This paper presents an implementation and evaluation of instant restore. The
technique is incrementally implemented on a system starting with the
traditional ARIES design for logging and recovery. Experiments show that the
transaction latency perceived after a media failure can be cut down to less
than a second and that the overhead imposed by the technique on normal
processing is minimal. The net effect is that a few "nines" of availability are
added to the system using simple and low-overhead software techniques
Main Memory Implementations for Binary Grouping
An increasing number of applications depend on efficient storage and analysis features for XML data. Hence, query optimization and efficient evaluation techniques for the emerging XQuery standard become more and more important. Many XQuery queries require nested expressions. Unnesting them often introduces binary grouping. We introduce several algorithms implementing binary grouping and analyze their time and space complexity. Experiments demonstrate their performance
Bloch oscillations of Bose-Einstein condensates: Quantum counterpart of dynamical instability
We study the Bloch dynamics of a quasi one-dimensional Bose-Einstein
condensate of cold atoms in a tilted optical lattice modeled by a Hamiltonian
of Bose-Hubbard type: The corresponding mean-field system described by a
discrete nonlinear Schr\"odinger equation can show a dynamical (or modulation)
instability due to chaotic dynamics and equipartition over the quasimomentum
modes. It is shown, that these phenomena are related to a depletion of the
Floquet-Bogoliubov states and a decoherence of the condensate in the
many-particle description. Three different types of dynamics are distinguished:
(i) decaying oscillations in the region of dynamical instability, and (ii)
persisting Bloch oscillations or (iii) periodic decay and revivals in the
region of stability.Comment: 12 pages, 14 figure
Sampling-Based Query Re-Optimization
Despite of decades of work, query optimizers still make mistakes on
"difficult" queries because of bad cardinality estimates, often due to the
interaction of multiple predicates and correlations in the data. In this paper,
we propose a low-cost post-processing step that can take a plan produced by the
optimizer, detect when it is likely to have made such a mistake, and take steps
to fix it. Specifically, our solution is a sampling-based iterative procedure
that requires almost no changes to the original query optimizer or query
evaluation mechanism of the system. We show that this indeed imposes low
overhead and catches cases where three widely used optimizers (PostgreSQL and
two commercial systems) make large errors.Comment: This is the extended version of a paper with the same title and
authors that appears in the Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2016
Towards a Landau-Zener formula for an interacting Bose-Einstein condensate
We consider the Landau-Zener problem for a Bose-Einstein condensate in a
linearly varying two-level system, for the full many-particle system as well
and in the mean-field approximation. The many-particle problem can be solved
approximately within an independent crossings approximation, which yields an
explicit Landau-Zener formula.Comment: RevTeX, 8 pages, 9 figure
Run Generation Revisited: What Goes Up May or May Not Come Down
In this paper, we revisit the classic problem of run generation. Run
generation is the first phase of external-memory sorting, where the objective
is to scan through the data, reorder elements using a small buffer of size M ,
and output runs (contiguously sorted chunks of elements) that are as long as
possible.
We develop algorithms for minimizing the total number of runs (or
equivalently, maximizing the average run length) when the runs are allowed to
be sorted or reverse sorted. We study the problem in the online setting, both
with and without resource augmentation, and in the offline setting.
(1) We analyze alternating-up-down replacement selection (runs alternate
between sorted and reverse sorted), which was studied by Knuth as far back as
1963. We show that this simple policy is asymptotically optimal. Specifically,
we show that alternating-up-down replacement selection is 2-competitive and no
deterministic online algorithm can perform better.
(2) We give online algorithms having smaller competitive ratios with resource
augmentation. Specifically, we exhibit a deterministic algorithm that, when
given a buffer of size 4M , is able to match or beat any optimal algorithm
having a buffer of size M . Furthermore, we present a randomized online
algorithm which is 7/4-competitive when given a buffer twice that of the
optimal.
(3) We demonstrate that performance can also be improved with a small amount
of foresight. We give an algorithm, which is 3/2-competitive, with
foreknowledge of the next 3M elements of the input stream. For the extreme case
where all future elements are known, we design a PTAS for computing the optimal
strategy a run generation algorithm must follow.
(4) Finally, we present algorithms tailored for nearly sorted inputs which
are guaranteed to have optimal solutions with sufficiently long runs
From Cooperative Scans to Predictive Buffer Management
In analytical applications, database systems often need to sustain workloads
with multiple concurrent scans hitting the same table. The Cooperative Scans
(CScans) framework, which introduces an Active Buffer Manager (ABM) component
into the database architecture, has been the most effective and elaborate
response to this problem, and was initially developed in the X100 research
prototype. We now report on the the experiences of integrating Cooperative
Scans into its industrial-strength successor, the Vectorwise database product.
During this implementation we invented a simpler optimization of concurrent
scan buffer management, called Predictive Buffer Management (PBM). PBM is based
on the observation that in a workload with long-running scans, the buffer
manager has quite a bit of information on the workload in the immediate future,
such that an approximation of the ideal OPT algorithm becomes feasible. In the
evaluation on both synthetic benchmarks as well as a TPC-H throughput run we
compare the benefits of naive buffer management (LRU) versus CScans, PBM and
OPT; showing that PBM achieves benefits close to Cooperative Scans, while
incurring much lower architectural impact.Comment: VLDB201
Event Stream Processing with Multiple Threads
Current runtime verification tools seldom make use of multi-threading to
speed up the evaluation of a property on a large event trace. In this paper, we
present an extension to the BeepBeep 3 event stream engine that allows the use
of multiple threads during the evaluation of a query. Various parallelization
strategies are presented and described on simple examples. The implementation
of these strategies is then evaluated empirically on a sample of problems.
Compared to the previous, single-threaded version of the BeepBeep engine, the
allocation of just a few threads to specific portions of a query provides
dramatic improvement in terms of running time
Quantum tunneling as a classical anomaly
Classical mechanics is a singular theory in that real-energy classical
particles can never enter classically forbidden regions. However, if one
regulates classical mechanics by allowing the energy E of a particle to be
complex, the particle exhibits quantum-like behavior: Complex-energy classical
particles can travel between classically allowed regions separated by potential
barriers. When Im(E) -> 0, the classical tunneling probabilities persist.
Hence, one can interpret quantum tunneling as an anomaly. A numerical
comparison of complex classical tunneling probabilities with quantum tunneling
probabilities leads to the conjecture that as ReE increases, complex classical
tunneling probabilities approach the corresponding quantum probabilities. Thus,
this work attempts to generalize the Bohr correspondence principle from
classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure
Biorthogonal quantum mechanics
The Hermiticity condition in quantum mechanics required for the characterization of (a) physical observables and (b) generators of unitary motions can be relaxed into a wider class of operators whose eigenvalues are real and whose eigenstates are complete. In this case, the orthogonality of eigenstates is replaced by the notion of biorthogonality that defines the relation between the Hilbert space of states and its dual space. The resulting quantum theory, which might appropriately be called 'biorthogonal quantum mechanics', is developed here in some detail in the case for which the Hilbert-space dimensionality is finite. Specifically, characterizations of probability assignment rules, observable properties, pure and mixed states, spin particles, measurements, combined systems and entanglements, perturbations, and dynamical aspects of the theory are developed. The paper concludes with a brief discussion on infinite-dimensional systems. © 2014 IOP Publishing Ltd
- …
