52 research outputs found

    Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L.

    Get PDF
    Gibberellin (GA) signalling during pumpkin male flower development is highly regulated, including biosynthetic, perception, and transduction pathways. GA 20-oxidases, 3-oxidases, and 2-oxidases catalyse the final part of GA synthesis. Additionally, 7-oxidase initiates this part of the pathway in some cucurbits including Cucurbita maxima L. (pumpkin). Expression patterns for these GA-oxidase-encoding genes were examined by competitive reverse transcription-PCR (RT-PCR) and endogenous GA levels were determined during pumpkin male flower development. In young flowers, GA20ox3 transcript levels are high in stamens, followed by high levels of the GA precursor GA9. Later, just before flower opening, transcript levels for GA3ox3 and GA3ox4 increase in the hypanthium and stamens, respectively. In the stamen, following GA3ox4 expression, bioactive GA4 levels rise dramatically. Accordingly, catabolic GA2ox2 and GA2ox3 transcript levels are low in developing flowers, and increase in mature flowers. Putative GA receptor GID1b and DELLA repressor GAIPb transcript levels do not change in developing flowers, but increase sharply in mature flowers. Emasculation arrests floral development completely and leads to abscission of premature flowers. Application of GA4 (but not of its precursors GA12-aldehyde or GA9) restores normal growth of emasculated flowers. These results indicate that de novo GA4 synthesis in the stamen is under control of GA20ox3 and GA3ox4 genes just before the rapid flower growth phase. Stamen-derived bioactive GA is essential and sufficient for male flower development, including the petal and the pedicel growth

    A Century of Gibberellin Research

    Get PDF

    From Open to Minimally Invasive: The Sacrocolpopexy

    No full text
    With an increased demand for pelvic organ prolapse surgeries as the population ages, mesh-related osteomyelitis will become more prevalent. This case series enriches the paucity of data on management options for delayed osteomyelitis related to pelvic organ prolapse mesh. A literature review revealed no case reports of delayed onset osteomyelitis presenting up to a decade after colpopexy mesh placement. We present three cases of delayed osteomyelitis, their presentation, diagnosis and management at a tertiary academic referral center. Patients presented between 1 and 10 years after mesh colpopexy. Three different mesh materials were utilized during the initial procedures: Restorelle Y, Gynamesh and Gore-Tex mesh. The first case demonstrates failed expectant management with eventual surgical intervention on a medically compromised patient. The two subsequent cases describe elective complete mesh resection after several prior failed mesh revision attempts. This short case series and literature review illustrates that mesh-related osteomyelitis after a remote sacrocolpopexy carries significant morbidity. Mesh removal by means of minimally invasive surgery in the hands of an experienced surgical team utilizing DaVinci Robotic System is a good option and may lead to best patient outcomes

    Influence of engineered roughness microstructures on adhesion and turbulent resuspension of microparticles

    No full text
    International audienceFrom microplastics resuspending into the atmosphere to earth particles left behind during extraterrestrial explorations, the resuspension of microparticles by a turbulent gas flow occurs in many natural, environmental and industrial systems. Wall surfaces, onto which particles initially adhere, are rarely smooth and this surface roughness affects particle resuspension. Available experimental data on particle resuspension have been obtained with substrates, whose surfaces are either unaltered or manually abraded with, for instance, sand blasting. In these experiments, the roughness elements span a wide size range and are in-homogeneously distributed in space. Surface functionalization is a modern technique allowing the precise fabrication of a wall surface with well-characterized microstructures, hence reducing the asperity randomness associated with conventional abrasion techniques. Taking advantage of surface functionalization, we present here a new set of reference data, where the wall asperities are represented by a structured arrangement of micropillars and microcubes. Adhesion force measurements and particle remaining fraction against gas velocity, at Reynolds number up to 8000, are reported for one reference and two artificially roughened substrates. Laboratory measurements show that the microasperities have little to moderate effect on the mean adhesion force and the threshold velocity, at which half of the 100-μm particles resuspend. The standard deviations are, however, much more affected. The presented results will primarily contribute to the improvement of resuspension models, which until now rely on a simplified representation of the surface roughness elements. The presented measurements are highly compatible with such models, which involve elementary roughness features, such as hemispherical asperities superimposed with a flat plate
    corecore