139 research outputs found

    A statistical model for the excitation of cavities through apertures

    Full text link
    In this paper, a statistical model for the coupling of electromagnetic radiation into enclosures through apertures is presented. The model gives a unified picture bridging deterministic theories of aperture radiation, and statistical models necessary for capturing the properties of irregular shaped enclosures. A Monte Carlo technique based on random matrix theory is used to predict and study the power transmitted through the aperture into the enclosure. Universal behavior of the net power entering the aperture is found. Results are of interest for predicting the coupling of external radiation through openings in irregular enclosures and reverberation chambers.Comment: 12 pages, 11 figures, in press, IEEE Transactions on Electromagnetic Compatibilit

    Generalised Impedance Model of Wireless Links Assisted by Reconfigurable Intelligent Surfaces

    Full text link
    We devise an end-to-end communication channel model that describes the performance of RIS-assisted MIMO wireless links. The model borrows the impedance (interaction) matrix formalism from the Method of Moments and provides a physics-based communication model. In configurations where the transmit and receive antenna arrays are distant from the RIS beyond a wavelength, a reduced model provides accurate results for arbitrary RIS unit cell geometry. Importantly, the simplified model configures as a cascaded channel transfer matrix whose mathematical structure is compliant with widely accepted, but less accurate, system level RIS models. A numerical validation of the communication model is presented for the design of binary RIS structures with scatterers of canonical geometry. Attained results are consistent with path-loss models: For obstructed line-of-sight between transmitter and receiver, the channel capacity of the (optimised) RIS-assisted link scales as R2R^{-2}, with RR RIS-receiver distance at fixed transmitter position. Our results shows that the applicability of communication models based on mutual impedance matrices is not restricted to canonical minimum scattering RIS unit cells.Comment: Submitted to IEEE Transactions on Antennas and Propagation; 15 pages, 11 figure

    Quantifying Volume Changing Perturbations in a Wave Chaotic System

    Full text link
    A sensor was developed to quantitatively measure perturbations which change the volume of a wave chaotic cavity while leaving its shape intact. The sensors work in the time domain by using either scattering fidelity of the transmitted signals or time reversal mirrors. The sensors were tested experimentally by inducing volume changing perturbations to a one cubic meter mixed chaotic and regular billiard system. Perturbations which caused a volume change that is as small as 54 parts in a million were quantitatively measured. These results were obtained by using electromagnetic waves with a wavelength of about 5cm, therefore, the sensor is sensitive to extreme sub-wavelength changes of the boundaries of a cavity. The experimental results were compared with Finite Difference Time Domain (FDTD) simulation results, and good agreement was found. Furthermore, the sensor was tested using a frequency domain approach on a numerical model of the star graph, which is a representative wave chaotic system. These results open up interesting applications such as: monitoring the spatial uniformity of the temperature of a homogeneous cavity during heating up / cooling down procedures, verifying the uniform displacement of a fluid inside a wave chaotic cavity by another fluid, etc.Comment: 13 pages, 13 figure

    Predicting the statistics of wave transport through chaotic cavities by the Random Coupling Model: a review and recent progress

    Full text link
    In this review, a model (the Random Coupling Model) that gives a statistical description of the coupling of radiation into and out of large enclosures through localized and/or distributed channels is presented. The Random Coupling Model combines both deterministic and statistical phenomena. The model makes use of wave chaos theory to extend the classical modal description of the cavity fields in the presence of boundaries that lead to chaotic ray trajectories. The model is based on a clear separation between the universal statistical behavior of the isolated chaotic system, and the deterministic coupling channel characteristics. Moreover, the ability of the random coupling model to describe interconnected cavities, aperture coupling, and the effects of short ray trajectories is discussed. A relation between the random coupling model and other formulations adopted in acoustics, optics, and statistical electromagnetics, is examined. In particular, a rigorous analogy of the random coupling model with the Statistical Energy Analysis used in acoustics is presented.Comment: 32 pages, 9 figures, submitted to 'Wave Motion', special issue 'Innovations in Wave Model

    Absorbing cross section in reverberation chamber: experimental and numerical results

    Get PDF
    Reverberation chamber (RC) test facility allows to determine the absorbing cross section (ACS) of lossy materials under a random field excitation. Measurements are based on the quality factor variation produced by the sample under test presence with respect to the empty chamber condition. Simulations are based on the representation of the RC electromagnetic field by means of a random plane wave superposition. A finite-difference time-domain code is used to compute the material absorbed power and to recover a numerical ACS. The method sensibility is stressed by application to small size samples. Comparison between numerical and experimental data reveals a satisfactory agreement. Results for different materials are presented in the paper: soft foam absorbers, carbon foam sheets, and carbon/carbon sheets

    Probability distribution of the coherence bandwidth of a reverberation chamber

    Get PDF
    A theoretical probability distribution and associated statistics for the coherence bandwidth of an ideal mode-stirred reverberation chamber are derived. The stochastic model assumes and exploits the ergodicity of a dynamic wave chaotic cavity by expressing the coherence bandwidth in terms of the random effective excitation bandwidth and by replacing spatial averaging of transmitter-receiver locations with stir (ensemble) averaging. The theoretical model is validated through comparison with the empirical cumulative distribution function (cdf) extracted from measured S-parameter data from a real chamber, and through simulation using analytical calculations for a fictitious wall-stirred chamber. The results are particularly relevant to the improvement of transmission quality and uncertainty quantification of wireless multipath propagation
    corecore