37 research outputs found
Compactness Determines the Success of Cube and Octahedron Self-Assembly
Nature utilizes self-assembly to fabricate structures on length scales ranging from the atomic to the macro scale. Self-assembly has emerged as a paradigm in engineering that enables the highly parallel fabrication of complex, and often three-dimensional, structures from basic building blocks. Although there have been several demonstrations of this self-assembly fabrication process, rules that govern a priori design, yield and defect tolerance remain unknown. In this paper, we have designed the first model experimental system for systematically analyzing the influence of geometry on the self-assembly of 200 and 500 µm cubes and octahedra from tethered, multi-component, two-dimensional (2D) nets. We examined the self-assembly of all eleven 2D nets that can fold into cubes and octahedra, and we observed striking correlations between the compactness of the nets and the success of the assembly. Two measures of compactness were used for the nets: the number of vertex or topological connections and the radius of gyration. The success of the self-assembly process was determined by measuring the yield and classifying the defects. Our observation of increased self-assembly success with decreased radius of gyration and increased topological connectivity resembles theoretical models that describe the role of compactness in protein folding. Because of the differences in size and scale between our system and the protein folding system, we postulate that this hypothesis may be more universal to self-assembling systems in general. Apart from being intellectually intriguing, the findings could enable the assembly of more complicated polyhedral structures (e.g. dodecahedra) by allowing a priori selection of a net that might self-assemble with high yields
Recommended from our members
Sum frequency generation (SFG) - Surface vibrational spectroscopy studies of buried interfaces: Catalytic reaction intermediates on transition metal crystal surfaces at high reactant pressures; Polymer surface structures at the solid-gas and solid-liquid interfaces
SFG has been utilized to monitor the surface species present on platinum and rhodium crystal surfaces during catalytic reactions at atmospheric pressures. Ethylene hydrogenation to ethane, cyclohexene hydrogenation to cyclohexane and its dehydrogenation to benzene, and carbon monoxide oxidation to carbon dioxide have been studied while also measuring the turnover rates and the gas phase product distribution by gas chromatography Strongly bound spectators, weakly bound reaction intermediates, and pressure-dependent changes in the chemical bonding of surface species have all been observed. SFG spectra of polyethylene and polypropylene show monolayer sensitivity and reveal temperature-dependent changes of surface structure. For polymer blends, the hydrophobic component segregates to the solid-air interface, and the hydrophilic component segregates at the solid-water interface. Changes in SFG spectra of polymer blends as a function of bulk concentration correlate with changes of contact angle. SFG is an excellent probe of surface-structure and surface-composition changes as the polymer interface is altered
Multimaterial magnetically assisted 3D printing of composite materials
3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature