5 research outputs found

    Statističko optimiranje proizvodnje α-galaktozidaze submerznim uzgojem aktinomicete Streptomyces griseoloalbus primjenom metodologije odzivnih površina

    Get PDF
    α-Galactosidase production by a novel actinomycete strain Streptomyces griseoloalbus in shake flask culture was optimized using response surface methodology. Screening of variables to find their relative effect on α-galactosidase production was done using Plackett-Burman design. Out of the eleven factors screened, salinity, magnesium sulphate and temperature were found to influence the enzyme production significantly. The optimal levels of these variables and the effect of their mutual interactions on enzyme production were determined using Box-Behnken design. The interaction between salinity and magnesium sulphate concentration was found to enhance α-galactosidase production, whereas temperature exhibited an influence independent of the other two factors. Using this statistical optimization method, the α-galactosidase production was increased from 17 to 50 U/mL.Primjenom metodologije odzivnih površina optimirana je proizvodnja α-galaktozidaze s pomoću novog soja aktinomiceta Streptomyces griseoloalbus u pokusima na tresilici. Primjenom Plackett-Burmanova statističkog plana ispitan je utjecaj varijabli na proizvodnju α-galaktozidaze. Od jedanaest ispitanih faktora, na proizvodnju enzima bitno su utjecali salinitet, koncentracija magnezijeva sulfata i temperatura. Optimalne vrijednosti tih varijabli i njihovo uzajamno djelovanje na proizvodnju enzima određeno je primjenom Box-Behnken statističkog plana. Međusobnim utjecajem saliniteta i koncentracije magnezijeva sulfata poboljšana je proizvodnja α-galaktozidaze, za razliku od temperature čiji utjecaj nije ovisio o ta dva faktora. Primjenom takva postupka proizvodnja α-galaktozidaze povećana je sa 17 na 50 U/mL

    Statistical Optimization of α-Galactosidase Production in Submerged Fermentation by Streptomyces griseoloalbus Using Response Surface Methodology

    No full text
    α-Galactosidase production by a novel actinomycete strain Streptomyces griseoloalbus in shake flask culture was optimized using response surface methodology. Screening of variables to find their relative effect on α-galactosidase production was done using Plackett-Burman design. Out of the eleven factors screened, salinity, magnesium sulphate and temperature were found to influence the enzyme production significantly. The optimal levels of these variables and the effect of their mutual interactions on enzyme production were determined using Box-Behnken design. The interaction between salinity and magnesium sulphate concentration was found to enhance α-galactosidase production, whereas temperature exhibited an influence independent of the other two factors. Using this statistical optimization method, the α-galactosidase production was increased from 17 to 50 U/mL

    Fucoidan from Marine Macroalgae: Biological Actions and Applications in Regenerative Medicine, Drug Delivery Systems and Food Industry

    No full text
    The marine macroalgae produce a collection of bioactive polysaccharides, of which the sulfated heteropolysaccharide fucoidan produced by brown algae of the class Phaeophyceae has received worldwide attention because of its particular biological actions that confer nutritional and health benefits to humans and animals. The biological actions of fucoidan are determined by their structure and chemical composition, which are largely influenced by the geographical location, harvest season, extraction process, etc. This review discusses the structure, chemical composition and physicochemical properties of fucoidan. The biological action of fucoidan and its applications for human health, tissue engineering, regenerative medicine and drug delivery are also addressed. The industrial scenario and prospects of research depicted would give an insight into developing fucoidan as a commercially viable and sustainable bioactive material in the nutritional and pharmacological sectors

    Advances in oligosaccharides production from brown seaweeds: extraction, characterization, antimetabolic syndrome, and other potential applications

    No full text
    ABSTRACTBrown seaweeds are a promising source of bioactive substances, particularly oligosaccharides. This group has recently gained considerable attention due to its diverse cell wall composition, structure, and wide-spectrum bioactivities. This review article provides a comprehensive update on advances in oligosaccharides (OSs) production from brown seaweeds and their potential health applications. It focuses on advances in feedstock pretreatment, extraction, characterization, and purification prior to OS use for potential health applications. Brown seaweed oligosaccharides (BSOSs) are extracted using various methods. Among these, enzymatic hydrolysis is the most preferred, with high specificity, mild reaction conditions, and low energy consumption. However, the enzyme selection and hydrolysis conditions need to be optimized for desirable yield and oligosaccharides composition. Characterization of oligosaccharides is essential to determine their structure and properties related to bioactivities and to predict their most suitable application. This is well covered in this review. Analytical techniques such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and nuclear magnetic resonance (NMR) spectroscopy are commonly applied to analyze oligosaccharides. BSOSs exhibit a range of biological properties, mainly antimicrobial, anti-inflammatory, and prebiotic properties among others. Importantly, BSOSs have been linked to possible health advantages, including metabolic syndrome management. Metabolic syndrome is a cluster of conditions, such as obesity, hypertension, and dyslipidemia, which increase the risk of cardiovascular disease and type 2 diabetes. Furthermore, oligosaccharides have potential applications in the food and pharmaceutical industries. Future research should focus on improving industrial-scale oligosaccharide extraction and purification, as well as researching their potential utility in the treatment of various health disorders.[Figure: see text
    corecore