13 research outputs found

    A comparative study of breed differences in the anatomical configuration of the equine vertebral column

    Get PDF
    The importance of the equine thoracolumbar vertebral column in orthopaedic disorders is well recognized and diagnostic imaging becomes more feasible, but little is known about variations in the anatomical configuration within breeds. In this descriptive post-mortem study, anatomical variations in three widely differing breeds: Warmblood horses, Shetland ponies and semi-feral Konik horses are described. The caudal cervical (C), thoracic (T), lumbar (L) and sacral (S) regions of the vertebral column of 30 Warmblood horses, 29 Shetland ponies and 18 Konik horses were examined using computed tomography and visualized by volume rendering. Homologous/morphologic variations in the caudal cervical area were frequently seen in Warmblood horses (43%), which was significantly more than in the other breeds (p < 0.001). The as standard described equine formula of 18 T, 6 L and 5 S vertebrae was seen in 78% of Konik horses, but only in 53% Warmblood horses and 38% Shetland ponies, which was significantly different (p < 0.05). Overall, Shetland ponies showed a higher tendency of thoracoization, lumbarization and more variations in the number of vertebrae and pairs of ribs. Ankylosed intertransverse joints (ITJs) between transverse processes of the lumbar vertebrae were most common between the second last and last lumbar vertebra and prevalence was significantly higher in Shetland ponies (61%), than in Warmblood horses (38%) and Konik horses (7%) (p < 0.0001). Cranial to the second last lumbar vertebra there were fewer ITJs ankylosed (14%) in Warmblood horses (p < 0.0095), and this decrease in number of ankylosed ITJs was different compared to the change in ankylosed ITJs in Shetland ponies (p < 0.005). ITJs occurred asymmetrically in 15% (12/77) of the cases. A limitation of the study was that clinical data of the horses were only incompletely available, precluding any conclusions about the potential clinical implications of anatomical variations. Knowledge of variation in osseous anatomy of the equine thoracolumbar vertebral column is important for the interpretation of diagnostic imaging. To assess the functional importance and clinical relevance of this variation, follow-up studies are necessary

    A comparative study of breed differences in the anatomical configuration of the equine vertebral column

    Get PDF
    The importance of the equine thoracolumbar vertebral column in orthopaedic disorders is well recognized and diagnostic imaging becomes more feasible, but little is known about variations in the anatomical configuration within breeds. In this descriptive post-mortem study, anatomical variations in three widely differing breeds: Warmblood horses, Shetland ponies and semi-feral Konik horses are described. The caudal cervical (C), thoracic (T), lumbar (L) and sacral (S) regions of the vertebral column of 30 Warmblood horses, 29 Shetland ponies and 18 Konik horses were examined using computed tomography and visualized by volume rendering. Homologous/morphologic variations in the caudal cervical area were frequently seen in Warmblood horses (43%), which was significantly more than in the other breeds (p < 0.001). The as standard described equine formula of 18 T, 6 L and 5 S vertebrae was seen in 78% of Konik horses, but only in 53% Warmblood horses and 38% Shetland ponies, which was significantly different (p < 0.05). Overall, Shetland ponies showed a higher tendency of thoracoization, lumbarization and more variations in the number of vertebrae and pairs of ribs. Ankylosed intertransverse joints (ITJs) between transverse processes of the lumbar vertebrae were most common between the second last and last lumbar vertebra and prevalence was significantly higher in Shetland ponies (61%), than in Warmblood horses (38%) and Konik horses (7%) (p < 0.0001). Cranial to the second last lumbar vertebra there were fewer ITJs ankylosed (14%) in Warmblood horses (p < 0.0095), and this decrease in number of ankylosed ITJs was different compared to the change in ankylosed ITJs in Shetland ponies (p < 0.005). ITJs occurred asymmetrically in 15% (12/77) of the cases. A limitation of the study was that clinical data of the horses were only incompletely available, precluding any conclusions about the potential clinical implications of anatomical variations. Knowledge of variation in osseous anatomy of the equine thoracolumbar vertebral column is important for the interpretation of diagnostic imaging. To assess the functional importance and clinical relevance of this variation, follow-up studies are necessary

    A comparative study of breed differences in the anatomical configuration of the equine vertebral column

    No full text
    The importance of the equine thoracolumbar vertebral column in orthopaedic disorders is well recognized and diagnostic imaging becomes more feasible, but little is known about variations in the anatomical configuration within breeds. In this descriptive post-mortem study, anatomical variations in three widely differing breeds: Warmblood horses, Shetland ponies and semi-feral Konik horses are described. The caudal cervical (C), thoracic (T), lumbar (L) and sacral (S) regions of the vertebral column of 30 Warmblood horses, 29 Shetland ponies and 18 Konik horses were examined using computed tomography and visualized by volume rendering. Homologous/morphologic variations in the caudal cervical area were frequently seen in Warmblood horses (43%), which was significantly more than in the other breeds (p < 0.001). The as standard described equine formula of 18 T, 6 L and 5 S vertebrae was seen in 78% of Konik horses, but only in 53% Warmblood horses and 38% Shetland ponies, which was significantly different (p < 0.05). Overall, Shetland ponies showed a higher tendency of thoracoization, lumbarization and more variations in the number of vertebrae and pairs of ribs. Ankylosed intertransverse joints (ITJs) between transverse processes of the lumbar vertebrae were most common between the second last and last lumbar vertebra and prevalence was significantly higher in Shetland ponies (61%), than in Warmblood horses (38%) and Konik horses (7%) (p < 0.0001). Cranial to the second last lumbar vertebra there were fewer ITJs ankylosed (14%) in Warmblood horses (p < 0.0095), and this decrease in number of ankylosed ITJs was different compared to the change in ankylosed ITJs in Shetland ponies (p < 0.005). ITJs occurred asymmetrically in 15% (12/77) of the cases. A limitation of the study was that clinical data of the horses were only incompletely available, precluding any conclusions about the potential clinical implications of anatomical variations. Knowledge of variation in osseous anatomy of the equine thoracolumbar vertebral column is important for the interpretation of diagnostic imaging. To assess the functional importance and clinical relevance of this variation, follow-up studies are necessary

    A comparative study of breed differences in the anatomical configuration of the equine vertebral column

    No full text
    The importance of the equine thoracolumbar vertebral column in orthopaedic disorders is well recognized and diagnostic imaging becomes more feasible, but little is known about variations in the anatomical configuration within breeds. In this descriptive post-mortem study, anatomical variations in three widely differing breeds: Warmblood horses, Shetland ponies and semi-feral Konik horses are described. The caudal cervical (C), thoracic (T), lumbar (L) and sacral (S) regions of the vertebral column of 30 Warmblood horses, 29 Shetland ponies and 18 Konik horses were examined using computed tomography and visualized by volume rendering. Homologous/morphologic variations in the caudal cervical area were frequently seen in Warmblood horses (43%), which was significantly more than in the other breeds (p < 0.001). The as standard described equine formula of 18 T, 6 L and 5 S vertebrae was seen in 78% of Konik horses, but only in 53% Warmblood horses and 38% Shetland ponies, which was significantly different (p < 0.05). Overall, Shetland ponies showed a higher tendency of thoracoization, lumbarization and more variations in the number of vertebrae and pairs of ribs. Ankylosed intertransverse joints (ITJs) between transverse processes of the lumbar vertebrae were most common between the second last and last lumbar vertebra and prevalence was significantly higher in Shetland ponies (61%), than in Warmblood horses (38%) and Konik horses (7%) (p < 0.0001). Cranial to the second last lumbar vertebra there were fewer ITJs ankylosed (14%) in Warmblood horses (p < 0.0095), and this decrease in number of ankylosed ITJs was different compared to the change in ankylosed ITJs in Shetland ponies (p < 0.005). ITJs occurred asymmetrically in 15% (12/77) of the cases. A limitation of the study was that clinical data of the horses were only incompletely available, precluding any conclusions about the potential clinical implications of anatomical variations. Knowledge of variation in osseous anatomy of the equine thoracolumbar vertebral column is important for the interpretation of diagnostic imaging. To assess the functional importance and clinical relevance of this variation, follow-up studies are necessary

    The PPILOW project: Innovations improving welfare in low input and organic pig and poultry farms

    No full text
    International audienceThe PPILOW project aims to co-construct innovations to improve Poultry and Pig Welfare in Low-input outdoor and Organic farming systems through a multi-actor approach. PPILOW implements a participatory approach for proposing and studying welfare-improvement levers. It will provide a combination of practical solutions that can be applied at a pan-European level with specific adjustments depending on citizen’s expectations and the target market. The multi-actor approach consists in involving end-users including farmers, breeding companies, feed producers, consumer associations, retailers, advisers, processors, and scientists in National Practitioner Groups (NPG) in six participating countries. PPILOW partners facilitate the groups by connecting NPG at European level, transferring scientific information, interacting with partners engaged in animal experiments, and co-creating innovations rising from NPG-specific demands. They co-build with PPILOW partners welfare self-assessment tools (development of the PIGLOW app for pigs and refinement of the EBENE¼ app for poultry), and innovative breeding, feeding, and rearing strategies and techniques to improve the welfare of animals. They co-design protocols, test innovations on farm, and disseminate the results. In turn, they receive insights on methods and scientific results, and inputs from other NPG reinforcing the value of the expected outcomes. Approaches focus on avoiding physical damage and the elimination of layer male chicks, on reducing boar taint of intact male pigs, promoting positive behaviours, animal health, and robustness through field studies with pigs and poultry. Multicriteria analyses of the most effective levers of welfare improvement will be performed to evaluate their economic, social, and environmental impacts based on the ‘One Welfare’ concept; economic and business models will also be developed. To ensure the rapid uptake of the project results by end-users, the close involvement of PPILOW’s NPG throughout the EU will ensure disseminationactivities and the facilitation of change. The PPILOW project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement N°816172. www.ppilow.eu

    The PPILOW project: Innovations improving welfare in low input and organic pig and poultry farms

    No full text
    International audienceThe PPILOW project aims to co-construct innovations to improve Poultry and Pig Welfare in Low-input outdoor and Organic farming systems through a multi-actor approach. PPILOW implements a participatory approach for proposing and studying welfare-improvement levers. It will provide a combination of practical solutions that can be applied at a pan-European level with specific adjustments depending on citizen’s expectations and the target market. The multi-actor approach consists in involving end-users including farmers, breeding companies, feed producers, consumer associations, retailers, advisers, processors, and scientists in National Practitioner Groups (NPG) in six participating countries. PPILOW partners facilitate the groups by connecting NPG at European level, transferring scientific information, interacting with partners engaged in animal experiments, and co-creating innovations rising from NPG-specific demands. They co-build with PPILOW partners welfare self-assessment tools (development of the PIGLOW app for pigs and refinement of the EBENE¼ app for poultry), and innovative breeding, feeding, and rearing strategies and techniques to improve the welfare of animals. They co-design protocols, test innovations on farm, and disseminate the results. In turn, they receive insights on methods and scientific results, and inputs from other NPG reinforcing the value of the expected outcomes. Approaches focus on avoiding physical damage and the elimination of layer male chicks, on reducing boar taint of intact male pigs, promoting positive behaviours, animal health, and robustness through field studies with pigs and poultry. Multicriteria analyses of the most effective levers of welfare improvement will be performed to evaluate their economic, social, and environmental impacts based on the ‘One Welfare’ concept; economic and business models will also be developed. To ensure the rapid uptake of the project results by end-users, the close involvement of PPILOW’s NPG throughout the EU will ensure disseminationactivities and the facilitation of change. The PPILOW project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement N°816172. www.ppilow.eu

    PPILOW: innovations for improving animal welfare and human well-being in low-input outdoor and organic poultry and pig production systems

    No full text
    International audienc

    PPILOW: innovations for improving animal welfare and human well-being in low-input outdoor and organic poultry and pig production systems

    No full text
    International audienc

    PPILOW: innovations for improving animal welfare and human well-being in low-input outdoor and organic poultry and pig production systems

    No full text
    International audienc

    The PPILOW project: Innovations improving welfare in low input and organic pig and poultry farms

    No full text
    International audienceThe PPILOW project aims to co-construct innovations to improve Poultry and Pig Welfare in Low-input outdoor and Organic farming systems through a multi-actor approach. PPILOW implements a participatory approach for proposing and studying welfare-improvement levers. It will provide a combination of practical solutions that can be applied at a pan-European level with specific adjustments depending on citizen’s expectations and the target market. The multi-actor approach consists in involving end-users including farmers, breeding companies, feed producers, consumer associations, retailers, advisers, processors, and scientists in National Practitioner Groups (NPG) in six participating countries. PPILOW partners facilitate the groups by connecting NPG at European level, transferring scientific information, interacting with partners engaged in animal experiments, and co-creating innovations rising from NPG-specific demands. They co-build with PPILOW partners welfare self-assessment tools (development of the PIGLOW app for pigs and refinement of the EBENE¼ app for poultry), and innovative breeding, feeding, and rearing strategies and techniques to improve the welfare of animals. They co-design protocols, test innovations on farm, and disseminate the results. In turn, they receive insights on methods and scientific results, and inputs from other NPG reinforcing the value of the expected outcomes. Approaches focus on avoiding physical damage and the elimination of layer male chicks, on reducing boar taint of intact male pigs, promoting positive behaviours, animal health, and robustness through field studies with pigs and poultry. Multicriteria analyses of the most effective levers of welfare improvement will be performed to evaluate their economic, social, and environmental impacts based on the ‘One Welfare’ concept; economic and business models will also be developed. To ensure the rapid uptake of the project results by end-users, the close involvement of PPILOW’s NPG throughout the EU will ensure disseminationactivities and the facilitation of change. The PPILOW project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement N°816172. www.ppilow.eu
    corecore