12 research outputs found

    Complete APTX deletion in a patient with ataxia with oculomotor apraxia type 1

    Get PDF
    Background: Ataxia with oculomotor apraxia type 1 is an autosomal-recessive neurodegenerative disorder characterized by a childhood onset of slowly progressive cerebellar ataxia, followed by oculomotor apraxia and a severe primary motor peripheral axonal motor neuropathy. Ataxia with oculomotor apraxia type 1 is caused by bi-allelic mutations in APTX (chromosome 9p21.1). Case presentation: Our patient has a clinical presentation that is typical for ataxia with oculomotor apraxia type 1 with no particularly severe phenotype. Multiplex Ligation-dependent Probe Amplification analysis resulted in the identification of a homozygous deletion of all coding APTX exons (3 to 9). SNP array analysis using the Illumina Infinium CytoSNP-850 K microarray indicated that the deletion was about 62 kb. Based on the SNP array results, the breakpoints were found using direct sequence analysis: c.-5 + 1225_*44991del67512, p.0?. Both parents were heterozygous for the deletion. Homozygous complete APTX deletions have been described in literature for two other patients. We obtained a sample from one of these two patients and characterized the deletion (156 kb) as c.-23729_*115366del155489, p.0?, including the non-coding exons 1A and 2 of APTX. The more severe phenotype reported for this patient is not observed in our patient. It remains unclear whether the larger size of the deletion (156 kb vs 62 kb) plays a role in the phenotype (no extra genes are deleted). Conclusion: Here we described an ataxia with oculomotor apraxia type 1 patient who has a homozygous deletion of the complete coding region of APTX. In contrast to the patient with the large deletion, our patient does not have a severe phenotype. More patients with deletions of APTX are required to investigate a genotype-phenotype effect

    Diagnosis and management of Cornelia de Lange syndrome:first international consensus statement

    Get PDF
    Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning

    A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]

    No full text
    Hereditary spinocerebellar ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative disorders for which >/=14 different genetic loci have been identified. In some SCA types, expanded tri- or pentanucleotide repeats have been identified, and the length of these expansions correlates with the age at onset and with the severity of the clinical phenotype. In several other SCA types, no genetic defect has yet been identified. We describe a large, three-generation family with early-onset tremor, dyskinesia, and slowly progressive cerebellar ataxia, not associated with any of the known SCA loci, and a mutation in the fibroblast growth factor 14 (FGF14) gene on chromosome 13q34. Our observations are in accordance with the occurrence of ataxia and paroxysmal dyskinesia in Fgf14-knockout mice. As indicated by protein modeling, the amino acid change from phenylalanine to serine at position 145 is predicted to reduce the stability of the protein. The present FGF14 mutation represents a novel gene defect involved in the neurodegeneration of cerebellum and basal ganglia

    Cerebellar Cortical Infarct Cavities : Correlation With Risk Factors and MRI Markers of Cerebrovascular Disease

    No full text
    BACKGROUND AND PURPOSE: Small cerebellar infarct cavities have been recently found on magnetic resonance imaging (MRI) to preferentially involve the cerebellar cortex, but epidemiological studies are lacking. We aimed to determine the prevalence and risk factor profiles of cerebellar cortical infarct cavities (≤1.5 cm) as well as their association with MRI markers of cerebrovascular disease and functioning. METHODS: We analyzed the 1.5 Tesla MRI of 636 patients (mean age, 62±9 years; 81% men) from the Second Manifestations of Arterial Disease-Memory, Depression and Aging (SMART-Medea) study. Logistic regression analyses were performed to estimate the associations of age, sex, vascular risk factors, MRI markers of cerebrovascular disease, and functioning with cerebellar cortical cavities, adjusted for age and sex. RESULTS: Cerebellar cortical infarct cavities occurred on MRI in 10% of patients and were significantly associated with age, intima-media thickness (odds ratio [OR], 2.0; 95% confidence interval [CI], 1.1-3.7), high levels of homocysteinemia (OR, 1.8; 95% CI, 1.0-3.3), cortical infarcts (OR, 2.9; 95% CI, 1.6-5.4), gray matter lacunes of presumed vascular origin (OR, 3.0; 95% CI, 1.6-5.8), brain stem infarcts (OR, 5.1; 95% CI, 1.9-13.6), and decreased brain parenchymal fraction (OR, 0.84; 95% CI, 0.74-0.94), but not with white matter hyperintensities (OR, 1.2; 95% CI, 0.8-1.8) or white matter lacunes of presumed vascular origin (OR, 1.1; 95% CI, 0.5-2.5). They were also associated with worse physical functioning (OR, -2.6; 95% CI, -5.7 to -0.9) but not with mental functioning. CONCLUSIONS: Cerebellar cortical infarct cavities are far more common than previously assumed based on symptomatic case series and are associated with markers of atherothromboembolic cerebrovascular disease

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics
    corecore