8 research outputs found

    Intragenomic diversity of Rhizobium leguminosarum bv. trifolii clover nodule isolates

    Get PDF
    BACKGROUND: Soil bacteria from the genus Rhizobium are characterized by a complex genomic architecture comprising chromosome and large plasmids. Genes responsible for symbiotic interactions with legumes are usually located on one of the plasmids, named the symbiotic plasmid (pSym). The plasmids have a great impact not only on the metabolic potential of rhizobia but also underlie genome rearrangements and plasticity. RESULTS: Here, we analyzed the distribution and sequence variability of markers located on chromosomes and extrachromosomal replicons of Rhizobium leguminosarum bv. trifolii strains originating from nodules of clover grown in the same site in cultivated soil. First, on the basis of sequence similarity of repA and repC replication genes to the respective counterparts of chromids reported in R. leguminosarum bv. viciae 3841 and R. etli CFN42, chromid-like replicons were distinguished from the pool of plasmids of the nodule isolates studied. Next, variability of the gene content was analyzed in the different genome compartments, i.e., the chromosome, chromid-like and 'other plasmids'. The stable and unstable chromosomal and plasmid genes were detected on the basis of hybridization data. Displacement of a few unstable genes between the chromosome, chromid-like and 'other plasmids', as well as loss of some markers was observed in the sampled strains. Analyses of chosen gene sequences allowed estimation of the degree of their adaptation to the three genome compartments as well as to the host. CONCLUSIONS: Our results showed that differences in distribution and sequence divergence of plasmid and chromosomal genes can be detected even within a small group of clover nodule isolates recovered from clovers grown at the same site. Substantial divergence of genome organization could be detected especially taking into account the content of extrachromosomal DNA. Despite the high variability concerning the number and size of plasmids among the studied strains, conservation of the location as well as dynamic distribution of the individual genes (especially replication genes) of a particular genome compartment were demonstrated. The sequence divergence of particular genes may be affected by their location in the given genome compartment. The 'other plasmid' genes are less adapted to the host genome than the chromosome and chromid-like genes

    An ontology-based graph approach to support buildings design conformity with a given style

    No full text
    This paper deals with analysing and evaluating design suitability for a given environment. A design is deemed to “fit” into the environment in which it is planned to be built if it follows the same style and shows sufficient “closeness” to other buildings in the area. The knowledge about the designed building is encoded in the form of a labelled graph. To test the conformity of the design with a given style an ontology-based graph approach is proposed, while to calculate the degree of similarity of the design to other designs graph mining methods are used. The proposed approach is illustrated by examples of designing buildings in two styles which are well integrated with the environment

    Phenotype profiling of Rhizobium leguminosarum bv. trifolii clover nodule isolates reveal their both versatile and specialized metabolic capabilities

    Get PDF
    Rhizobium leguminosarum bv. trifolii (Rlt) are soil bacteria inducing nodules on clover, where they fix nitrogen. Genome organization analyses of 22 Rlt clover nodule isolates showed that they contained 3–6 plasmids and majority of them possessed large (>1 Mb), chromid-like replicon with exception of four Rlt strains. The Biolog phenotypic profiling comprising utilization of C, N, P, and S sources and tolerance to osmolytes and pH revealed metabolic versatility of the Rlt strains. Statistical analyses of our results showed a clear bias toward specific metabolic preferences, tolerance to unfavorable osmotic conditions, and increased nodulation activity of the strains having smaller amount of extrachromosomal DNA. The K5.4 and K4.15 lacking a large megaplasmid possessed substantially diverse metabolism and belonged to effective clover inoculants. In conclusion, besides overall metabolic versatility, some metabolic specialization may enable rhizobia to persist in variable environments and to compete successfully with other bacteria. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00203-013-0874-x) contains supplementary material, which is available to authorized users
    corecore