10 research outputs found

    Pentosidine, advanced glycation end product, in acute ischaemic stroke patients with and without atrial rhythm disturbances

    Get PDF
    Atrial fibrillation (AF) and atherosclerotic disease are independent risk factors for acute ischaemic stroke (AIS). The optimal biological marker which could allow differentiation between AF and non-AF AIS patients is still not available.Aim of the study. Aim of the present study was to investigate the role of pentosidine as a potential biological marker for AF in an AIS patient group.Materials and methods. Sixty-three acute ischaemic hemispheric stroke patients were recruited and divided into two groups according to the presumed underlying mechanism: with or without atrial rhythm disorders. Ten healthy volunteers were a reference group for serum level of pentosidine. Carotid artery ultrasound was performed, and common carotid artery stiffness and intima-media thickness were measured. Serum levels of pentosidine and selected routine biochemical risk factors for atherosclerosis (cholesterol and its lipoprotein fractions, homocysteine) were examined.Results. A higher serum level of pentosidine was observed in patients without atrial fibrillation (1,509 ± 485.13pmol/ml); a statistically significant difference was observed compared to the reference group (1,041.52 ± 411.17pmol/ml; p = 0.01), but not the AF patients (1,438.19 ± 495.97pmol/ml; p = 0.59). No significant difference in the non-AF group compared to the AF group for carotid intima-media thickness (IMT)/stiffness and pentosidine serum level was recorded.Conclusions and clinical implications. A higher serum level of pentosidine was observed in AIS patients without atrial fibrillation compared to the healthy volunteers. According to the results of the present study, no difference between these patients in the selected risk factors of atherosclerosis were observed. Further studies are needed to identify a reliable marker of AF that would bring added value to the standard diagnostic workup after acute ischaemic stroke

    The effects of T4 and A3R bacteriophages on differentiation of human myeloid dendritic cells

    Get PDF
    Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs

    LPS-activated monocytes are unresponsive to T4 phage and T4-generated Escherichia coli lysate

    Get PDF
    A growing body of data shows that bacteriophages can interact with different kinds of immune cells. The objective of this study was to investigate whether T4 bacteriophage and T4-generated Escherichia coli lysate affect functions of monocytes, the key population of immune cells involved in antibacterial immunity. To that end we evaluated how T4 and E. coli lysate influence the expression of main costimulatory molecules including CD40, CD80 and CD86, TLR2, TLR4 on monocytes, as well as the production of IL-6 and IL-12 in cultures of peripheral blood mononuclear cells (PBMCs). Separate experiments were performed on unactivated and LPS-activated PBMCs cultures. Both studied preparations significantly increased the percentage of CD14+CD16-CD40+ and CD14+CD16-CD80+ monocytes in unactivated PBMCs cultures, as well as the concentration of IL-6 and IL-12 in culture supernates. However, neither purified T4 nor E. coli lysate had any significant effect on monocytes in LPS-activated PBMCs cultures. We conclude that LPS-activated monocytes are unresponsive to phages and products of phage-induced lysis of bacteria. This study is highly relevant to phage therapy because it suggests that in patients with infections caused by Gram-negative bacteria the administration of phage preparations to patients and lysis of bacteria by phages are not likely to overly stimulate monocytes

    Immunosuppressive Drugs Affect High-Mannose/Hybrid N-Glycans on Human Allostimulated Leukocytes

    Get PDF
    N-glycosylation plays an important role in the majority of physiological and pathological processes occurring in the immune system. Alteration of the type and abundance of glycans is an element of lymphocyte differentiation; it is also common in the development of immune-mediated inflammatory diseases. The N-glycosylation process is very sensitive to different environmental agents, among them the pharmacological environment of immunosuppressive drugs. Some results show that high-mannose oligosaccharides have the ability to suppress different stages of the immune response. We evaluated the effects of cyclosporin A (CsA) and rapamycin (Rapa) on high-mannose/hybrid-type glycosylation in human leukocytes activated in a two-way mixed leukocyte reaction (MLR). CsA significantly reduced the number of leukocytes covered by high-mannose/hybrid N-glycans, and the synergistic action of CsA and Rapa led to an increase of these structures on the remaining leukocytes. This is the first study indicating that β1 and β3 integrins bearing high-mannose/hybrid structures are affected by Rapa and CsA. Rapa taken separately and together with CsA changed the expression of β1 and β3 integrins and, by regulating the protein amount, increased the oligomannose/hybrid-type N-glycosylation on the leukocyte surface. We suggest that the changes in the glycosylation profile of leukocytes may promote the development of tolerance in transplantation

    A3R Phage and Staphylococcus aureus Lysate Do Not Induce Neutrophil Degranulation

    No full text
    The objective of this study was to evaluate the effects of A3R phage and Staphylococcus aureus lysate obtained after phage infection on neutrophil degranulation. The exocytosis of primary and secondary granules from neutrophils was investigated in vitro in whole blood specimens by flow cytometry based on the expression of specific markers of exocytosis (CD63 for primary granules and CD66b for secondary granules). We found that both A3R and S. aureus lysate had no significant effect on the exocytosis of primary and secondary granules. These data suggest that neither A3R virions nor any products of phage-induced lysis of S. aureus are likely to induce neutrophil degranulation in patients who are treated with phage preparations. Since neutrophil granules contain some potentially toxic proteins, our results provide an important argument for the safety of phage therapy. Moreover, these data indicate that the induction of neutrophil degranulation is not likely to contribute to antibacterial effects of phages

    Endometriotic Peritoneal Fluid Stimulates Recruitment of CD4+CD25highFOXP3+ Treg Cells

    No full text
    Endometriosis is a common gynecological disorder characterized by the presence of endometrial-like tissue outside the uterus. The disease is associated with disturbed local and systemic immunity. It has been reported that the proportion of CD4+CD25highFOXP3+ Treg cells may be significantly increased in the peritoneal fluid of patients with endometriosis. Therefore, the aim of our study was to investigate whether the proportions of Treg cells in the peritoneal cavity of patients with endometriosis are related to the chemotactic and stimulatory activity of the local peritoneal milieu. The peritoneal fluid was collected from 13 women with ovarian endometriosis and 12 control women without the disease. T cell populations were analyzed by flow cytometry, cytokines and chemokines were evaluated using the cytometric bead kit, and cell chemotaxis was studied by cell migration assay. We confirmed that the proportions of Treg cells are increased in the peritoneal fluid of women with endometriosis as compared to the control women. Endometriosis was also associated with elevated concentrations of IL-6, IL-10, and TGF-β1/2 as well as CCL20, CXCL8, CXCL9, and CXCL10. We did not reveal any changes in the proportion of peritoneal Th17 cells and concentrations of IL-17A. Peritoneal Treg cells positively correlated with concentrations of TGF-β, IL-10, and CCL20. Endometriotic peritoneal fluid stimulated chemotaxis of both CD4+ and Treg cells. This chemotactic activity positively correlated with concentrations of CCL20. CCL20 stimulated the migration of Treg cells, and the chemotactic activity of the endometriotic peritoneal fluid was inhibited by neutralizing anti-CCL20 antibodies. These results imply that increased proportions of the peritoneal Treg cells in women with endometriosis may result from attraction and activation by local chemokines and cytokines, especially CCL20 and TGF-β. Since Treg cells contribute to the immunopathogenesis of endometriosis, their chemotaxis and activation may be considered as a target for therapeutic intervention

    Expanding Diversity and Common Goal of Regulatory T and B Cells. II: In Allergy, Malignancy, and Transplantation

    No full text

    Expanding Diversity and Common Goal of Regulatory T and B Cells. I: Origin, Phenotype, Mechanisms

    No full text
    corecore