53 research outputs found

    The effect of serotonin 5-HT1A, 5-HT2 receptor ligands, ketoprofen and their combination in models of induced pain in mice

    Get PDF
    The present study was carried out to investigate the effects of the 7-(3-chlorophenyl)piperazinylalkyl derivatives of 8-alkoxypurine-2,6-dione (compounds 1-4) in two animal models of induced pain and to compare their effects with ketoprofen and with their combination. All experiments were performed on albino mice. Mice were evaluated for their responsiveness to noxious stimuli using: the hot-plate test and the phenylbenzoquinone- induced writhing test. All compounds showed analgesic activity only in the writhing test. The analgesic activities of compounds 3 and 4 were similar to ketoprofen. The compounds slightly increased the analgesic effect of ketoprofen when used in combination in the visceral type of pain. The possible mechanisms of the antinociceptive effect of these compounds are thought to involve the activation of analgesic effect mediated by the serotonergic pathways or combination of this mechanism with other important mediators playing a role in pain modulation

    Anti-inflammatory and antioxidant activity of 8-methoxy-1,3-dimethyl-2,6-dioxo-purin-7-yl derivatives with terminal carboxylic, ester or amide moieties in animal models

    Get PDF
    The previous studies in a series of 8-methoxy-1,3-dimethyl-2,6-dioxo-purin-7-yl derivatives revealed their analgesic properties. We extended the study with these compounds in aim to assess their impact on inflammatory process. For this purpose we used: the zymosan-induced peritonitis and the carrageenan induced edema model. Furthermore, the antioxidant activity of the investigated compounds by the FRAP assay was determined. For the most active derivatives from evaluated series their influence on plasma TNF-α level was also tested in vivo. All investigated purine-2,6-dione derivatives 1-11 decreased neutrophils count and inhibited intensity of early vascular permeability. Furthermore, all evaluated compounds reduced the volume of edema caused by subcutaneous injection of carrageenan. Derivatives 1 (with ester moiety), 3 and 4 (with carboxylic group) showed the highest activity in the zymosan-induced peritonitis. In addition, a significant inhibition of plasma TNF-α level in rats with endotoxemia was observed following intraperitoneal administration of these compounds. In turn, compounds 6 and 8-11 containing amide moiety showed the greatest anti-inflammatory (antiedematous) effect in the carrageenan-induced paw edema model. All compounds did not show significant antioxidant properties. The present studies revealed that the presented purine-2,6-dione derivatives exhibit a significant anti-inflammatory activity and this effect may result from their ability to lower TNF-α level

    Studies of new purine derivatives with acetic acid moiety in human keratinocytes

    Get PDF
    Recently we described a group of purine derivatives based on theophylline structure with acetic acid moiety. Studies in a group of these compounds demonstrated their analgesic and anti-inflammatory properties. Taking into account wide spectrum of theophylline derivatives activity and searching for their new properties. the aim of the study was to evaluate safety of newly synthesized derivatives in human keratinocytes model. The effect of new purine derivatives with acetic acid moiety: 2-(8-methoxy-1,3-dimethyl-2,6-dioxo-purin-7-yl) acetic acid and 2-(1,3-dimethyl-2,6,8-trioxo-9H-purin-7-yl) acetic acid on proliferation rate and the ability of keratinocytes to migration was carried out. The results clearly demonstrate that purine derivatives with acetic acid moiety did not affect basic keratinocytes functions. Our compounds do not inhibit cells proliferation rate as well as their ability to migration. It can be therefore concluded that new purine derivatives with acetic acid moiety are safe versus normal cells. This observation opens up additional prospects in searching for their new applications

    Evaluation of antiarrythmic activity of novel imidazo[2,1-F]purine-2,4-dione and imidazolidine-2,4-dione derivatives with aminoalkyl moieties

    Get PDF
    The main goal of this study was to assess antiarrhythmic activity of novel aminoalkyl derivatives of imidazo[2,1-f]purine-2,4-dione and imidazolidine-2,4-dione exerting α1 and 5-HT1A receptors affinity. Tested compounds produced prophylactic and therapeutic antiarrhythmic activity in an adrenaline-induced model of arrhythmia. The strongest antiarrhythmic activity as well as the highest α1-adrenoreceptor affinity (Ki = 13.9 nM) was found for 5-methyl-5-phenyl-3-[3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl]-imidazolidine-2,4- dione (12). The results indicated a correlation between α1-adrenoreceptor affinities and antiarrhythmic activity

    Pan-Phosphodiesterase Inhibitors Attenuate TGF-β-Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation

    Get PDF
    Airway remodeling is a pathological process that accompanies many chronic lung diseases. One of the important players in this process are epithelial cells, which under the influence of pro-inflammatory and pro-fibrotic factors present in the airway niche, actively participate in the remodeling process by increasing extracellular matrix secretion, acquiring migration properties, and overproducing pro-fibrotic transducers. Here, we investigated the effect of three new 8-arylalkylamino- and 8-alkoxy-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl-N-(5-(tert-butyl)-2-hydroxyphenyl)butanamides (1, 2, and 3), representing prominent pan-phosphodiesterase (pan-PDE) inhibitors on transforming growth factor type β (TGF-β)-induced alveolar epithelial type II cells (A549 cell line) of a pro-fibrotic phenotype. Our results demonstrate for the first time the strong activity of pan-PDE inhibitors in the prevention of TGF-β-induced mesenchymal markers’ expression and A549 cells’ migration. We also showed an increased p-CREB and decreased p-Smad-2 phosphorylation in TGF-β-induced A549 cells treated with 1, 2, and 3 derivatives, thereby confirming a pan-PDE inhibitor mesenchymal phenotype reducing effect in alveolar epithelial type II cells via suppression of the canonical Smad signaling pathway. Our observations confirmed that PDE inhibitors, and especially those active against various isoforms involved in the airway remodeling, constitute an interesting group of compounds modulating the pro-fibrotic response of epithelial cells

    A novel, pan-PDE inhibitor exerts anti-fibrotic effects in human lung fibroblasts via inhibition of TGF-β\beta signaling and activation of cAMP/PKA signaling

    Get PDF
    Phosphodiesterase (PDE) inhibitors are currently a widespread and extensively studied group of anti-inflammatory and anti-fibrotic compounds which may find use in the treatment of numerous lung diseases, including asthma and chronic obstructive pulmonary disease. Several PDE inhibitors are currently in clinical development, and some of them, e.g., roflumilast, are already recommended for clinical use. Due to numerous reports indicating that elevated intracellular cAMP levels may contribute to the alleviation of inflammation and airway fibrosis, new and effective PDE inhibitors are constantly being sought. Recently, a group of 7,8-disubstituted purine-2,6-dione derivatives, representing a novel and prominent pan-PDE inhibitors has been synthesized. Some of them were reported to modulate transient receptor potential ankyrin 1 (TRPA1) ion channels as well. In this study, we investigated the effect of selected derivatives (832-a pan-PDE inhibitor, 869-a TRPA1 modulator, and 145-a pan-PDE inhibitor and a weak TRPA1 modulator) on cellular responses related to airway remodeling using MRC-5 human lung fibroblasts. Compound 145 exerted the most considerable effect in limiting fibroblast to myofibroblasts transition (FMT) as well as proliferation, migration, and contraction. The effect of this compound appeared to depend mainly on its strong PDE inhibitory properties, and not on its effects on TRPA1 modulation. The strong anti-remodeling effects of 145 required activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway leading to inhibition of transforming growth factor type β1 (TGF-β1) and Smad-dependent signaling in MRC-5 cells. These data suggest that the TGF-β pathway is a major target for PDE inhibitors leading to inhibitory effects on cell responses involved in airway remodeling. These potent, pan-PDE inhibitors from the group of 7,8-disubstituted purine-2,6-dione derivatives, thus represent promising anti-remodeling drug candidates for further research

    Synthesis and in vitro evaluation of anti-inflammatory, antioxidant, and anti-fibrotic effects of new 8-aminopurine-2,6-dione-based phosphodiesterase inhibitors as promising anti-asthmatic agents

    Get PDF
    Phosphodiesterase (PDE) inhibitors are currently an extensively studied group of compounds that can bring many benefits in the treatment of various inflammatory and fibrotic diseases, including asthma. Herein, we describe a series of novel N’-phenyl- or N’-benzylbutanamide and N’-arylidenebutanehydrazide derivatives of 8-aminopurine-2,6-dione (27–43) and characterized them as prominent pan-PDE inhibitors. Most of the compounds exhibited antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced murine macrophages RAW264.7. The most active compounds (32–35 and 38) were evaluated in human bronchial epithelial cells (HBECs) derived from asthmatics. To better map the bronchial microenvironment in asthma, HBECs after exposure to selected 8-aminopurine-2,6-dione derivatives were incubated in the presence of two proinflammatory and/or profibrotic factors: transforming growth factor type β (TGF-β) and interleukin 13 (IL-13). Compounds 32–35 and 38 significantly reduced both IL-13- and TGF-β-induced expression of proinflammatory and profibrotic mediators, respectively. Detailed analysis of their inhibition preferences for selected PDEs showed high affinity for isoenzymes important in the pathogenesis of asthma, including PDE1, PDE3, PDE4, PDE7, and PDE8. The presented data confirm that structural modifications within the 7 and 8 positions of the purine-2,6-dione core result in obtaining preferable pan-PDE inhibitors which in turn exert an excellent anti-inflammatory and anti-fibrotic effect in the bronchial epithelial cells derived from asthmatic patients. This dual-acting pan-PDE inhibitors constitute interesting and promising lead structures for further anti-asthmatic agent discovery

    Leki stosowane w chorobach układu oddechowego

    No full text
    corecore