989 research outputs found

    Raman-assisted Rabi resonances in two-mode cavity QED

    Full text link
    The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.Comment: 6 pages, 5 figure

    Indefinitely Oscillating Martingales

    Full text link
    We construct a class of nonnegative martingale processes that oscillate indefinitely with high probability. For these processes, we state a uniform rate of the number of oscillations and show that this rate is asymptotically close to the theoretical upper bound. These bounds on probability and expectation of the number of upcrossings are compared to classical bounds from the martingale literature. We discuss two applications. First, our results imply that the limit of the minimum description length operator may not exist. Second, we give bounds on how often one can change one's belief in a given hypothesis when observing a stream of data.Comment: ALT 2014, extended technical repor

    Phytophthora ramorum

    Get PDF
    Phytophthora ramorum is a recently emerged plant pathogen and causal agent of one of the most destructive and devastating diseases currently affecting US horticulture and forests (Rizzo et al. 2002, 2005). This oomycete pathogen was discovered in Marin County, California, in the mid-1990s, causing sudden oak death on coast live oak (Quercus agrifolia) and tanoak (Notholithocarpus densiflorus) and simultaneously discovered in Europe causing foliar blight on Rhododendron and Viburnum (Rizzo et al. 2002; Werres et al. 2001). It is now known to affect more than 100 plant species, including economically important nursery and forest host species (Frankel 2008; Rizzo et al. 2005; Tooley et al. 2004; Tooley and Kyde 2007)

    Offline to Online Conversion

    Full text link
    We consider the problem of converting offline estimators into an online predictor or estimator with small extra regret. Formally this is the problem of merging a collection of probability measures over strings of length 1,2,3,... into a single probability measure over infinite sequences. We describe various approaches and their pros and cons on various examples. As a side-result we give an elementary non-heuristic purely combinatoric derivation of Turing's famous estimator. Our main technical contribution is to determine the computational complexity of online estimators with good guarantees in general.Comment: 20 LaTeX page

    Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals

    Full text link
    The kinetics and thermodynamics of structural transformations under pressure depend strongly on particle size due to the influence of surface free energy. By suitable design of surface structure, composition, and passivation it is possible, in principle, to prepare nanocrystals in structures inaccessible to bulk materials. However, few realizations of such extreme size-dependent behavior exist. Here we show with molecular dynamics computer simulation that in a model of CdSe/ZnS core/shell nanocrystals the core high pressure structure can be made metastable under ambient conditions by tuning the thickness of the shell. In nanocrystals with thick shells, we furthermore observe a wurtzite to NiAs transformation, which does not occur in the pure bulk materials. These phenomena are linked to a fundamental change in the atomistic transformation mechanism from heterogenous nucleation at the surface to homogenous nucleation in the crystal core. Our results suggest a new route towards expanding the range of available nanoscale materials

    Lewatit S100 in Drinking Water Treatment for Ammonia Removal

    Get PDF
    Ammonium nitrogen is the most important form of nitrogen that can cause excessive algal growth and stimulate eutrophication in surface water. The purpose of this study is to investigate the possibility of removing ammonium from drinking water by means of an ion Exchange process. Polymeric Lewatit S100 material (particle-size 0.3–1.2 mm) was used. The breakthrough capacity was determined by dynamic laboratory investigations and the concentration of regenerant solution (5 and 10 % NaCl) was investigated. The concentration of ammonium ion inputs in the tap water that we used were 10, 5 and 2 mg NH4+ l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that the breakthrough capacity was very small at ammonium concentration 2 mg NH4 + l_1 compared to its breakthrough capacity at ammonium concentration 10 mg NH4 + l_1. There was no difference between regeneration by 10 and 5 % NaCl. We conclude that the use of Lewatit S100 is an attractive and promising method for ammonium concentration greater than 5 mg NH4 + l_1 and till 10 mg NH4 + l_1

    Clinoptilolite in Drinking Water Treatment for Ammonia Removal

    Get PDF
    In most countries today the removal of ammonium ions from drinking water has become almost a necessity. The natural zeolite clinoptiloliteis mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation, and this has prompted its use in water treatment, wastewater treatment, swimming pools and fish farming. The work described in this paper provides dynamic data on cation exchange processes in clinoptilolite involving the NH4 +, Ca+2 and Mg+2 cations. We used material of natural origin – clinoptilolite from Nižný Hrabovec in Slovakia (particle-size 3–5 mm). The breakthrough capacity was determined by dynamic laboratory investigations, and we investigated the influence of thermal pretreatment of clinoptilolite and the concentration of regenerant solution (2, 5, and 10% NaCl). The concentrations of ammonium ion inputs in the tap water that we used were 10, 5, and 2 mg NH4 + l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that repeated pretreatment sufficiently improves the zeolite’s properties, and the structure of clinoptilolite remains unchanged during the loading and regeneration cycles. Ammonium removal capacities were increased by approximately 40 % and 20 % for heat-treated zeolite samples. There was no difference between the regenerates for 10% and 5% NaCl. We conclude that the use of zeolite is an attractive and promising method for ammonium removal
    • …
    corecore