32 research outputs found

    Re-starting the conversation: improving shared decision making in antipsychotic prescribing

    Get PDF
    Shared Decision-Making (SDM) is one of the key components of patient-centred care. People diagnosed with schizophrenia/psychosis still face significant barriers to achieving this, particularly when it comes to antipsychotic medication prescribing. These barriers include issues such as stigma, feelings of coercion and lack of information. Clinicians also describe barriers to achieving SDM in antipsychotic prescribing, including a lack of training and support. In this viewpoint article, we provide a summary of these barriers from the perspectives of both service users and clinicians based. We suggest that, to make a practical first step towards achieving SDM, the conversation around antipsychotic prescribing needs to be re-started. However, the onus to do this should not be placed solely on the shoulders of Service Users. More research is needed to address this issue

    Codesigning a systemic discharge intervention for inpatient mental health settings (MINDS): a protocol for integrating realist evaluation and an engineering-based systems approach

    Get PDF
    © 2023 The Author(s). Published by BMJ. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Introduction: Transition following discharge from mental health hospital is high risk in terms of relapse, readmission and suicide. Discharge planning supports transition and reduces risk. It is a complex activity involving interacting systemic elements. The codesigning a systemic discharge intervention for inpatient mental health settings (MINDS) study aims to improve the process for people being discharged, their carers/supporters and staff who work in mental health services, by understanding, co-designing and evaluating implementation of a systemic approach to discharge planning. Methods and analysis: The MINDS study integrates realist research and an engineering-informed systems approach across three stages. Stage 1 applies realist review and evaluation using a systems approach to develop programme theories of discharge planning. Stage 2 uses an Engineering Better Care framework to codesign a novel systemic discharge intervention, which will be subjected to process and economic evaluation in stage 3. The programme theories and resulting care planning approach will be refined throughout the study ready for a future clinical trial. MINDS is co-led by an expert by experience, with researchers with lived experience co-leading each stage. Ethics and dissemination: MINDS stage 1 has received ethical approval from Yorkshire & The Humber—Bradford Leeds (Research Ethics Committee (22/YH/0122). Findings from MINDS will be disseminated via high-impact journal publications and conference presentations, including those with service user and mental health professional audiences. We will establish routes to engage with public and service user communities and National Health Service professionals including blogs, podcasts and short videos. Trial registration number: MINDS is funded by the National Institute of Health Research (NIHR 133013) https://fundingawards.nihr.ac.uk/award/NIHR133013. The realist review protocol is registered on PROSPERO. PROSPERO registration number: CRD42021293255.Peer reviewe

    Codesigning a systemic discharge intervention for inpatient mental health settings (MINDS): a protocol for integrating realist evaluation and an engineering-based systems approach

    No full text
    Introduction Transition following discharge from mental health hospital is high risk in terms of relapse, readmission and suicide. Discharge planning supports transition and reduces risk. It is a complex activity involving interacting systemic elements. The codesigning a systemic discharge intervention for inpatient mental health settings (MINDS) study aims to improve the process for people being discharged, their carers/supporters and staff who work in mental health services, by understanding, co-designing and evaluating implementation of a systemic approach to discharge planning.Methods and analysisThe MINDS study integrates realist research and an engineering-informed systems approach across three stages. Stage 1 applies realist review and evaluation using a systems approach to develop programme theories of discharge planning. Stage 2 uses an Engineering Better Care framework to codesign a novel systemic discharge intervention, which will be subjected to process and economic evaluation in stage 3. The programme theories and resulting care planning approach will be refined throughout the study ready for a future clinical trial. MINDS is co-led by an expert by experience, with researchers with lived experience co-leading each stage.Ethics and disseminationMINDS stage 1 has received ethical approval from Yorkshire & The Humber—Bradford Leeds (Research Ethics Committee (22/YH/0122). Findings from MINDS will be disseminated via high-impact journal publications and conference presentations, including those with service user and mental health professional audiences. We will establish routes to engage with public and service user communities and National Health Service professionals including blogs, podcasts and short videos.Trial registration numberMINDS is funded by the National Institute of Health Research (NIHR 133013)https://fundingawards.nihr.ac.uk/award/NIHR133013. The realist review protocol is registered on PROSPERO.PROSPERO registration numberCRD42021293255.</p

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0c¯¯¯¯¯¯) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Measurement of Ω0c baryon production and branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) in pp collisions at √s = 13 TeV

    No full text
    The inclusive production of the charm-strange baryon Ω0c is measured for the first time via its semileptonic decay into Ω−e+νe at midrapidity (|y| < 0.8) in proton–proton (pp) collisions at the centre-of-mass energy √s = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) is measured to be 1.12 ± 0.22 (stat.) ± 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    Measurements of long-range two-particle correlation over a wide pseudorapidity range in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the "ridge" phenomenon, were discovered in heavy-ion collisions, and later found in pp and p−Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small-collision systems. In this Letter, measurements of the long-range correlations in p−Pb collisions at sNN−−−√=5.02 TeV are extended to a pseudorapidity gap of Δη∼8 between particles using the ALICE, forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of Δη∼8 for the first time in p−Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small-collision systems such as p−Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, v2({\eta}), is extracted from the long-range correlations. The v2(η) results are presented for a wide pseudorapidity range of −3.1<η<4.8 in various centrality classes in p−Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small-collision systems, the v2(η) measurements are compared to hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small-collision systems

    Charged-particle production as a function of the relative transverse activity classifier in pp, p–Pb, and Pb–Pb collisions at the LHC

    No full text
    Measurements of charged-particle production in pp, p−Pb, and Pb−Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (ptrigT) in the range 8<ptrigT<15 GeV/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NTch/⟨NTch⟩, is used to group events according to their UE activity, where NTch is the charged-particle multiplicity per event in the transverse region and ⟨NTch⟩ is the mean value over the whole analysed sample. The energy dependence of the RT distributions in pp collisions at s√=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pT spectra as a function of RT in the three azimuthal regions in pp, p−Pb, and Pb−Pb collisions at sNN−−−√=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p−Pb)

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s = 13 TeV and in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s√=13 TeV and p−Pb collisions at sNN−−−√=5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle Δφ and pseudorapidity separation Δη for pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum interval 1<pT<4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6<|Δη|<1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events
    corecore