15 research outputs found

    Cross-sectional observational study of 208 patients with non-classical urea cycle disorders.

    Get PDF
    Urea cycle disorders (UCDs) are inherited disorders of ammonia detoxification often regarded as mainly of relevance to pediatricians. Based on an increasing number of case studies it has become obvious that a significant number of UCD patients are affected by their disease in a non-classical way: presenting outside the newborn period, following a mild course, presenting with unusual clinical features, or asymptomatic patients with only biochemical signs of a UCD. These patients are surviving into adolescence and adulthood, rendering this group of diseases clinically relevant to adult physicians as well as pediatricians. In preparation for an international workshop we collected data on all patients with non-classical UCDs treated by the participants in 20 European metabolic centres. Information was collected on a cohort of 208 patients 50% of which were ≥ 16 years old. The largest subgroup (121 patients) had X-linked ornithine transcarbamylase deficiency (OTCD) of whom 83 were female and 29% of these were asymptomatic. In index patients, there was a mean delay from first symptoms to diagnosis of 1.6 years. Cognitive impairment was present in 36% of all patients including female OTCD patients (in 31%) and those 41 patients identified presymptomatically following positive newborn screening (in 12%). In conclusion, UCD patients with non-classical clinical presentations require the interest and care of adult physicians and have a high risk of neurological complications. To improve the outcome of UCDs, a greater awareness by health professionals of the importance of hyperammonemia and UCDs, and ultimately avoidance of the still long delay to correctly diagnose the patients, is crucial

    Treatment of the Neutropenia Associated with GSD1b and G6PC3 Deficiency with SGLT2 Inhibitors.

    No full text
    Glycogen storage disease type Ib (GSD1b) is due to a defect in the glucose-6-phosphate transporter (G6PT) of the endoplasmic reticulum, which is encoded by the SLC37A4 gene. This transporter allows the glucose-6-phosphate that is made in the cytosol to cross the endoplasmic reticulum (ER) membrane and be hydrolyzed by glucose-6-phosphatase (G6PC1), a membrane enzyme whose catalytic site faces the lumen of the ER. Logically, G6PT deficiency causes the same metabolic symptoms (hepatorenal glycogenosis, lactic acidosis, hypoglycemia) as deficiency in G6PC1 (GSD1a). Unlike GSD1a, GSD1b is accompanied by low neutrophil counts and impaired neutrophil function, which is also observed, independently of any metabolic problem, in G6PC3 deficiency. Neutrophil dysfunction is, in both diseases, due to the accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases, which is slowly formed in the cells from 1,5-anhydroglucitol (1,5-AG), a glucose analog that is normally present in blood. Healthy neutrophils prevent the accumulation of 1,5-AG6P due to its hydrolysis by G6PC3 following transport into the ER by G6PT. An understanding of this mechanism has led to a treatment aimed at lowering the concentration of 1,5-AG in blood by treating patients with inhibitors of SGLT2, which inhibits renal glucose reabsorption. The enhanced urinary excretion of glucose inhibits the 1,5-AG transporter, SGLT5, causing a substantial decrease in the concentration of this polyol in blood, an increase in neutrophil counts and function and a remarkable improvement in neutropenia-associated clinical signs and symptoms

    Patient-reported outcomes on empagliflozin treatment in glycogen storage disease type Ib: An international questionnaire study.

    No full text
    In patients with glycogen storage disease type Ib (GSD Ib), quality of life is severely hampered by neutropenia and neutropenia-associated symptoms. SGLT2 inhibitors are a new treatment option and have shown improved medical outcomes in more than 120 patients so far. The aim of this international questionnaire study was to assess patient-reported outcomes of this new treatment in GSD Ib patients. Patients and caregivers of pediatric patients were invited to complete a web-based questionnaire. This was designed to evaluate treatment effects of the SGLT2 inhibitor empagliflozin on clinical symptoms and important aspects of daily life including physical performance, sleep, social and work life, traveling, socioeconomic aspects, and quality of life. The questionnaire was completed by 73 respondents from 17 different countries. The mean duration of treatment was 15 months, the cumulative treatment time was 94.8 years. More than 80% of patients reported an improved quality of life. The number of hospitalizations was reduced (66% of patients), as well as the number of days absent from school or work. Granulocyte colony-stimulating factor (G-CSF) treatment could be stopped in 49% of patients and reduced in another 42%. Clear improvement of neutropenia and all neutropenia-associated symptoms was reported by the majority of patients. Additionally, patients or caregivers reported positive effects on appetite (63%), level of activity (75%), overall well-being (96%), and sleep (63%). Empagliflozin positively impacts many aspects of daily life including work and social life and thereby significantly improves quality of life of patients and caregivers

    A newborn screening approach to diagnose 3-hydroxy-3-methylglutaryl-CoA lyase deficiency

    No full text
    Contains fulltext : 225031.pdf (publisher's version ) (Open Access)3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is a rare autosomal recessively inherited metabolic disorder. Patients suffer from avoidable neurologically devastating metabolic decompensations and thus would benefit from newborn screening (NBS). The diagnosis is currently made by measuring dry blood spot acylcarnitines (C5OH and C6DC) followed by urinary organic acid profiling for the differential diagnosis from several other disorders. Using untargeted metabolomics (reversed-phase UHPLC coupled to an Orbitrap Elite hybrid mass spectrometer) of plasma samples from 5 HMGCLD patients and 19 age-matched controls, we found 3-methylglutaconic acid and 3-hydroxy-3-methylglutaric acid, together with 3-hydroxyisovalerylcarnitine as the most discriminating metabolites between the groups. In order to evaluate the NBS potential of these metabolites we quantified the most discriminating metabolites from untargeted metabolomics in 23 blood spots from 4 HMGCLD patients and 55 controls by UHPLC tandem mass spectrometry. The results provide a tool for expanded NBS of HMGCLD using tandem mass spectrometry. Selected reaction monitoring transition 262/85 could be used in a first-tier NBS analysis to screen for elevated 3-hydroxyisovalerylcarnitine. In a positive case, a second-tier analysis of 3-hydroxy-3-methylglutaric acid and 3-methylglutaconic acid in a dry blood spot using UHPLC tandem mass spectrometry instruments confirms the diagnosis. In conclusion, we describe the identification of new diagnostic biomarkers for HMGCLD and their application in NBS in dry blood spots. By using second-tier testing, all patients with HMGCLD were unequivocally and correctly diagnosed

    Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options.

    No full text
    BACKGROUND: Adenosine kinase deficiency is a recently described defect affecting methionine metabolism with a severe clinical phenotype comprising mainly neurological and hepatic impairment and dysmorphism. METHODS: Clinical data of 11 additional patients from eight families with adenosine kinase deficiency were gathered through a retrospective questionnaire. Two liver biopsies of one patient were systematically evaluated. RESULTS: The main clinical symptoms are mild to severe liver dysfunction with neonatal onset, muscular hypotonia, global developmental retardation and dysmorphism (especially frontal bossing). Hepatic involvement is not a constant finding. Most patients have epilepsy and recurrent hypoglycemia due to hyperinsulinism. Major biochemical findings are intermittent hypermethioninemia, increased S-adenosylmethionine and S-adenosylhomocysteine in plasma and increased adenosine in urine. S-adenosylmethionine and S-adenosylhomocysteine are the most reliable biochemical markers. The major histological finding was pronounced microvesicular hepatic steatosis. Therapeutic trials with a methionine restricted diet indicate a potential beneficial effect on biochemical and clinical parameters in four patients and hyperinsulinism was responsive to diazoxide in two patients. CONCLUSION: Adenosine kinase deficiency is a severe inborn error at the cross-road of methionine and adenosine metabolism that mainly causes dysmorphism, brain and liver symptoms, but also recurrent hypoglycemia. The clinical phenotype varies from an exclusively neurological to a multi-organ manifestation. Methionine-restricted diet should be considered as a therapeutic option

    Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision.

    No full text
    Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care

    The impact of COVID-19 pandemic on the diagnosis and management of inborn errors of metabolism: A global perspective

    No full text
    Quantitative estimates for the global impact of COVID-19 on the diagnosis and management of patients with inborn errors of metabolism (IEM) are lacking. We collected relevant data from 16 specialized medical centers treating IEM patients in Europe, Asia and Africa. The median decline of reported IEM related services in March 1st-May 31st 2020 compared to the same period in 2019 were as high as 60-80% with a profound impact on patient management and care for this vulnerable patient group. More representative data along with outcome data and guidelines for managing IEM disorders under such extraordinary circumstances are needed

    Clinical presentation and outcome in a series of 32 patients with 2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency.

    No full text
    2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency, also known as beta-ketothiolase deficiency, is an inborn error of ketone body utilization and isoleucine catabolism. It is caused by mutations in the ACAT1 gene and may present with metabolic ketoacidosis. In order to obtain a more comprehensive view on this disease, we have collected clinical and biochemical data as well as information on ACAT1 mutations of 32 patients from 12 metabolic centers in five countries. Patients were between 23months and 27years old, more than half of them were offspring of a consanguineous union. 63% of the study participants presented with a metabolic decompensation while most others were identified via newborn screening or family studies. In symptomatic patients, age at manifestation ranged between 5months and 6.8years. Only 7% developed a major mental disability while the vast majority was cognitively normal. More than one third of the identified mutations in ACAT1 are intronic mutations which are expected to disturb splicing. We identified several novel mutations but, in agreement with previous reports, no clear genotype-phenotype correlation could be found. Our study underlines that the prognosis in MAT deficiency is good and MAT deficient individuals may remain asymptomatic, if diagnosed early and preventive measures are applied
    corecore