49 research outputs found

    Decreased levels of homoarginine and asymmetric dimethylarginine in children with type 1 diabetes: associations with cardiovascular risk factors but no effect by atorvastin

    Get PDF
    Objectives: To investigate homoarginine and asymmetric dimethylarginine (ADMA) in controls compared to children with type 1 diabetes (T1D) and if homoarginine and ADMA are affected by atorvastatin. Methods: Homoarginine and ADMA levels of 28 T1D patients were compared to levels of 41 controls. In T1D patients, homoarginine and ADMA were determined at baseline, 1 year, and 2 years at daily 10 mg atorvastatin or placebo within a double-blind study. Results: At baseline, both homoarginine and ADMA were lower (p<0.001) in T1D patients compared to controls. In T1D patients, homoarginine and ADMA were not influenced by atorvastatin. Inverse correlations between homoarginine and HbA1c (p<0.001) and between ADMA and systolic blood pressure (p=0.005) and pulse pressure (p=0.003) were shown. Conclusions: Homoarginine and ADMA levels are decreased and associated with cardiovascular risk factors in children with T1D without being affected by atorvastatin

    Opportunities for Two-Color Experiments in the Soft X-ray Regime at the European XFEL

    Get PDF
    X-ray pump/X-ray probe applications are made possible at X-ray Free Electron Laser (XFEL) facilities by generating two X-ray pulses with different wavelengths and controllable temporal delay. In order to enable this capability at the European XFEL, an upgrade project to equip the soft X-ray SASE3 beamline with a magnetic chicane is underway. In the present paper we describe the status of the project, its scientific focus and expected performance, including start-to-end simulations of the photon beam transport up to the sample, as well as recent experimental results demonstrating two-color lasing at photon energies of 805 eV + 835 eV and 910 eV + 950 eV. Additionally, we discuss methods to analyze the spectral properties and the intensity of the generated radiation to provide on-line diagnostics for future user experiments

    Picosecond to microsecond dynamics of X-ray irradiated materials at MHz pulse repetition rate

    No full text
    Abstract Modern X-ray free-electron lasers (XFELs) produce intense femtosecond X-ray pulses able to cause significant damage to irradiated targets. Energetic photoelectrons created upon X-ray absorption, and Auger electrons emitted after relaxation of core-hole states trigger secondary electron cascades, which contribute to the increasing transient free electron density on femtosecond timescales. Further evolution may involve energy and particle diffusion, creation of point defects, and lattice heating. This long-timescale (up to a microsecond) X-ray-induced dynamics is discussed on the example of silicon in two-dimensional geometry. For modeling, we apply an extended Two-Temperature model with electron density dynamics, nTTM, which describes relaxation of an irradiated sample between two successive X-ray pulses, emitted from XFEL at MHz pulse repetition rate. It takes into account ambipolar carrier diffusion, electronic and atomic heat conduction, as well as electron-ion coupling. To solve the nTTM system of equations in two dimensions, we developed a dedicated finite-difference integration algorithm based on Alternating Direction Implicit method with an additional predictor-corrector scheme. We show first results obtained with the model and discuss its possible applications for XFEL optics, detectors, and for diagnostics tools. In particular, the model can estimate the timescale of material relaxation relevant for beam diagnostic applications during MHz operation of contemporary and future XFELs

    MCP-Based Detectors: Calibration and First Photon Radiation Measurements

    No full text
    Detectors based on microchannel plates (MCPs) are used to detect radiation from free-electron lasers. Three MCP detectors have been developed by JINR for the European XFEL (SASE1, SASE2 and SASE3 lines). These detectors are designed to operate in a wide dynamic range from the level of spontaneous emission to the SASE saturation level (between a few nJ up to 25 mJ), in a wide wavelength range from 0.05 nm to 0.4 nm for SASE1 and SASE2, and from 0.4 nm to 4.43 nm for SASE3. The detectors measure photon pulse energies with an anode and a photodiode. The photon beam image is observed with an MCP imager with a phosphor screen. At present, the SASE1 and SASE3 MCP detectors are commissioned with XFEL beams. Calibration and first measurements of photon radiation in multibunch mode are performed with the SASE1 and SASE3 MCPs. The MCP detector for SASE2 and its electronics are installed in the XFEL tunnel, technically commissioned, and are now ready for acceptance tests with the X-ray beam

    Characterizing transmissive diamond gratings as beam splitters for the hard X-ray single-shot spectrometer of the European XFEL

    No full text
    The European X-ray Free Electron Laser (EuXFEL) offers intense, coherent femtosecond pulses, resulting in characteristic peak brilliance values a billion times higher than that of conventional synchrotron facilities. Such pulses result in extreme peak radiation levels of the order of terawatts cm−2 for any optical component in the beam and can exceed the ablation threshold of many materials. Diamond is considered the optimal material for such applications due to its high thermal conductivity (2052 W mK−1 at 300 K) and low absorption for hard X-rays. Grating structures were fabricated on free-standing CVD diamond of 10 µm thickness with 500 µm silicon substrate support. The grating structures were produced by electron-beam lithography at the Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, Switzerland. The grating lines were etched to a depth of 1.2 µm, resulting in an aspect ratio of 16. The characterization measurements with X-rays were performed on transmissive diamond gratings of 150 nm pitch at the P10 beamline of PETRA III, DESY. In this paper, the gratings are briefly described, and a measured diffraction efficiency of 0.75% at 6 keV in the first-order diffraction is shown; the variation of the diffraction efficiency across the grating surface is presented

    First Measurements with the K-Monochromator at the European XFEL

    No full text
    Hard X-ray free-electron lasers (XFELs) generate intense coherent X-ray beams by passing electrons through undulators, i.e. very long periodic magnet structures, which extend over hundreds of meters. The SASE1 and SASE2 undulator systems of the European XFEL consist of 35 segments with variable-gap planar undulators which are initially tuned to precise on-axis magnetic field strengths in a magnetic measurement laboratory to keep an important quality parameter – the K-value variation from segment to segment – below a certain limit (3 × 10−4 for 12 keV photon energy). After tunnel installation only photon-based methods can determine the K-values of undulator segments with a similar accuracy. The synchrotron radiation from a single or a few segments can be spectrally filtered by a dedicated crystal monochromator (K-monochromator) and recorded with a photodiode or with an imager that provides 2D information, tuned for high sensitivity to detect low photon densities from distant single undulator segments. This instrumentation is applied for electron orbit analysis and optimization, and adjustment of individual undulators in terms of their central magnetic axis with respect to the electron beam. Single undulator segments were analysed by scanning the monochromator crystal angle and detecting the steepest slope of a photodiode signal. Alternatively, in the imaging method, an imager recorded the radiation cone of electrons passing through the undulator segment. From the spatial distribution of the radiation, the K-parameter was determined with a sufficiently high relative accuracy

    Photon Beam Transport and Scientific Instruments at the European XFEL

    No full text
    European XFEL is a free-electron laser (FEL) user facility providing soft and hard X-ray FEL radiation to initially six scientific instruments. Starting user operation in fall 2017 European XFEL will provide new research opportunities to users from science domains as diverse as physics, chemistry, geo- and planetary sciences, materials sciences or biology. The unique feature of European XFEL is the provision of high average brilliance in the soft and hard X-ray regime, combined with the pulse properties of FEL radiation of extreme peak intensities, femtosecond pulse duration and high degree of coherence. The high average brilliance is achieved through acceleration of up to 27,000 electron bunches per second by the super-conducting electron accelerator. Enabling the usage of this high average brilliance in user experiments is one of the major instrumentation drivers for European XFEL. The radiation generated by three FEL sources is distributed via long beam transport systems to the experiment hall where the scientific instruments are located side-by-side. The X-ray beam transport systems have been optimized to maintain the unique features of the FEL radiation which will be monitored using build-in photon diagnostics. The six scientific instruments are optimized for specific applications using soft or hard X-ray techniques and include integrated lasers, dedicated sample environment, large area high frame rate detector(s) and computing systems capable of processing large quantities of data
    corecore