90 research outputs found

    Low Wavelength Loss of Germanium Doped Silica Fibers

    Get PDF

    Robust design of all-optical PSK regenerator based on phase sensitive amplification

    No full text
    More compact, stable, and efficient configuration of a recently-developed regenerator is presented. The regenerator is assessed at data rates up to 56 Gbit/s using white phase noise for the first time

    Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment

    No full text
    The performance of future ultra-long haul communication systems exploiting phase-encoded signals is likely to be compromised by noise generated during signal transmission. One potential way to mitigate such noise is to use Phase Sensitive Amplifiers (PSAs) which have been demonstrated to help remove phase as well as amplitude noise from phase-encoded signals. Recently, we showed that a PSA-based signal regenerator based on degenerate four-wave mixing can be implemented in a network-compatible manner in which only the (noisy) signal is present at the device input (black-box operation). The developed regenerator was also able to perform simultaneous wavelength conversion and multicasting, details/analysis of which are presented herein. However, this scheme was tested only with artificial noise generated in the laboratory and with the regenerator placed in front of the receiver, rather than in-line where even greater performance benefits are to be expected. Here, we address both theoretically and experimentally the important issue of how such a regenerator, operating for convenience in a multicasting mode, performs as an in-line device in an installed transmission fiber link. We also investigate the dispersion tolerance of the approach

    Nonlinear pulse distortion in few-mode fiber

    Get PDF
    Nonlinear pulse propagation in a few mode fiber is experimentally investigated, by measuring temporal and phase responses of the output pulses by use of a frequency discriminator technique, showing that self-phase modulation, dispersion and linear mode-coupling are the dominant effects

    Error-free 320 Gb/s simultaneous add-drop multiplexing

    Get PDF
    We report on the first demonstration of error-free time-division add-drop multiplexing at 320 Gb/s. The add- and drop-operations are performed simultaneously in a non-linear optical loop mirror with only 100 m of highly non-linear fibre.</p
    • …
    corecore