94 research outputs found
Test of Lorentz Symmetry by using a 3He/129Xe Co-Magnetometer
To test Lorentz symmetry we used a 3He/129Xe co-magnetometer. We will give a
short summary of our experimental setup and the results of our latest
measurements. We obtained preliminary results for the equatorial component of
the background field interacting with the spin of the bound neutron: b_n < 3.72
x 10^(-32) GeV (95 C.L.).Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 28 - July 2, 201
Limit on Lorentz and CPT violation of the bound Neutron Using a Free Precession 3He/129Xe co-magnetometer
We report on the search for Lorentz violating sidereal variations of the
frequency difference of co-located spin-species while the Earth and hence the
laboratory reference frame rotates with respect to a relic background field.
The co-magnetometer used is based on the detection of freely precessing nuclear
spins from polarized 3He and 129Xe gas samples using SQUIDs as low-noise
magnetic flux detectors. As result we can determine the limit for the
equatorial component of the background field interacting with the spin of the
bound neutron to be bn < 3.7 x 10^{-32} GeV (95 C.L.).Comment: 5 pages, 4 figure
Universal finite-size scaling analysis of Ising models with long-range interactions at the upper critical dimensionality: Isotropic case
We investigate a two-dimensional Ising model with long-range interactions
that emerge from a generalization of the magnetic dipolar interaction in spin
systems with in-plane spin orientation. This interaction is, in general,
anisotropic whereby in the present work we focus on the isotropic case for
which the model is found to be at its upper critical dimensionality. To
investigate the critical behavior the temperature and field dependence of
several quantities are studied by means of Monte Carlo simulations. On the
basis of the Privman-Fisher hypothesis and results of the renormalization group
the numerical data are analyzed in the framework of a finite-size scaling
analysis and compared to finite-size scaling functions derived from a
Ginzburg-Landau-Wilson model in zero mode (mean-field) approximation. The
obtained excellent agreement suggests that at least in the present case the
concept of universal finite-size scaling functions can be extended to the upper
critical dimensionality.Comment: revtex4, 10 pages, 5 figures, 1 tabl
Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate
Motivated by recent experiments with confined binary liquid mixtures near
demixing, we study the universal critical properties of a system, which belongs
to the Ising universality class, in the film geometry. We employ periodic
boundary conditions in the two lateral directions and fixed boundary conditions
on the two confining surfaces, such that one of them has a spatially
homogeneous adsorption preference while the other one exhibits a laterally
alternating adsorption preference, resembling locally a single chemical step.
By means of Monte Carlo simulations of an improved Hamiltonian, so that the
leading scaling corrections are suppressed, numerical integration, and
finite-size scaling analysis we determine the critical Casimir force and its
universal scaling function for various values of the aspect ratio of the film.
In the limit of a vanishing aspect ratio the critical Casimir force of this
system reduces to the mean value of the critical Casimir force for laterally
homogeneous ++ and +- boundary conditions, corresponding to the surface spins
on the two surfaces being fixed to equal and opposite values, respectively. We
show that the universal scaling function of the critical Casimir force for
small but finite aspect ratios displays a linear dependence on the aspect ratio
which is solely due to the presence of the lateral inhomogeneity. We also
analyze the order-parameter profiles at criticality and their universal scaling
function which allows us to probe theoretical predictions and to compare with
experimental data.Comment: revised version, section 5.2 expanded; 53 pages, 12 figures, iopart
clas
Stoichiometry of HLA Class II-Invariant Chain Oligomers
BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii
Trends Cell Biol.
A novel mechanism, centered on the Polo-like kinase Plo1p and Dma1p - a protein with a RING finger and an FHA-domain - prevents cytokinesis as long as the spindle checkpoint is active
- …