4 research outputs found

    Investigation into the utility of an immunocytochemical assay in body cavity effusions for diagnosis of feline infectious peritonitis

    Get PDF
    Objectives Feline coronaviruses (FCoVs) exist as two biotypes, feline enteric coronavirus and feline infectious peritonitis virus. Although feline infectious peritonitis (FIP) is a very common disease, the ante-mortem diagnosis of this disease still remains a challenge. Immunofluorescence staining of FCoV in macrophages in effusion has been considered as the reference standard for the diagnosis, but recently this method has been shown to have lower specificity than previously reported. In addition, this method is not widely available and requires the use of fluorescence microscopes. Therefore, it was the aim of this study to evaluate the diagnostic potential of an immunocytochemical (ICC) assay using body cavity effusion. Methods Effusion samples from 27 cats with immunohistochemically confirmed FIP and 29 cats with suspected FIP but a definitive diagnosis of another disease were examined. ICC specimens were evaluated with respect to positive immunostaining. In addition, effusion samples were stained with haematoxylin and eosin and evaluated cytologically. Results A diagnostic sensitivity of 85.2% was recorded for effusion specimens (95% confidence interval [CI] 66.3-95.8), while the diagnostic specificity was only 72.4% (95% CI 52.8-87.3). Conclusions and relevance Once the clinical disease of FIP develops in a cat, it always leads to death, and most of the cats are euthanased within a few days or weeks. As false-positive results might lead to euthanasia of cats suffering from potentially treatable diseases, the diagnostic specificity of a diagnostic tool is the most important factor in a fatal disease like FIP. Thus, the diagnostic utility of this test proved to be insufficient and positive ICC results should be interpreted with caution. Nevertheless, full-body necropsy could not be performed in 13/29 control cats. It is possible that these cats actually suffered from early-stage FIP and that this fact might have influenced the diagnostic specificity of the ICC. Based on the results of the present study, however, ICC of effusion samples currently cannot be recommended to confirm a suspicion of FIP

    Diagnostic utility of cerebrospinal fluid immunocytochemistry for diagnosis of feline infectious peritonitis manifesting in the central nervous system

    Get PDF
    Objectives The aim of the study was to evaluate whether an ante-mortem diagnosis of central nervous system (CNS) feline infectious peritonitis (FIP) is possible via immunocytochemical staining (ICC) of feline coronavirus antigen (FCoV) within macrophages of cerebrospinal fluid (CSF). Methods Prospectively, CSF samples of 41 cats were investigated, including cats with histopathologically confirmed FIP and neurological signs (n = 10), cats with confirmed FIP without CNS involvement (n = 11), cats with neurological signs but another confirmed CNS disease (n = 17), and cats without neurological signs and a disease other than FIP (n = 3). ICC staining of CSF macrophages was performed in all cats. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of CSF ICC were calculated. Results Of 10 samples from cats with CNS FIP, eight had detectable CSF macrophages, seven of which were positive for FCoV. Ten of 11 samples from cats with confirmed FIP without neurological signs had macrophages in the CSF, with all 10 being ICC-positive. In cats with other CNS disorders, 11/17 had macrophages, two of which stained positively. In cats with diseases other than FIP and without neurological disorders, 2/3 revealed macrophages, with one cat showing positive ICC staining. Diagnosis of FIP via CSF ICC had a sensitivity of 85.0% and a specificity of 83.3%. PPV and NPV were 85.0% and 83.3%. Conclusions and relevance CSF ICC is a highly sensitive test for ante-mortem diagnosis of FIP manifesting in the CNS. However, CNS ICC specificity is too low to confirm FIP and the method should only be applied in conjunction with other features such as CSF cytology. CNS ICC could be helpful to discover pre-neurological stages of CNS FIP

    Detection of feline coronavirus spike gene mutations as a tool to diagnose feline infectious peritonitis

    Get PDF
    Objectives Feline infectious peritonitis (FIP) is an important cause of death in the cat population worldwide. The ante-mortem diagnosis of FIP in clinical cases is still challenging. In cats without effusion, a definitive diagnosis can only be achieved post mortem or with invasive methods. The aim of this study was to evaluate the use of a combined reverse transcriptase nested polymerase chain reaction (RT-nPCR) and sequencing approach in the diagnosis of FIP, detecting mutations at two different nucleotide positions within the spike (S) gene. Methods The study population consisted of 64 cats with confirmed FIP and 63 cats in which FIP was initially suspected due to similar clinical or laboratory signs, but that were definitively diagnosed with another disease. Serum/plasma and/or effusion samples of these cats were examined for feline coronavirus (FCoV) RNA by RT-nPCR and, if positive, PCR products were sequenced for nucleotide transitions within the S gene. Results Specificity of RT-nPCR was 100% in all materials (95% confidence interval [CI] in serum/plasma 83.9-100.0;95% CI in effusion 93.0-100.0). The specificity of the sequencing step could not be determined as none of the cats of the control group tested positive for FCoV RNA. Sensitivity of the 'combined RT-nPCR and sequencing approach' was 6.5% (95% CI 0.8-21.4) in serum/plasma and 65.3% (95% CI 50.4-78.3) in effusion. Conclusions and relevance A positive result is highly indicative of the presence of FIP, but as none of the control cats tested positive by RT-nPCR, it was not possible to confirm that the FCoV mutant described can only be found in cats with FIP. Further studies are necessary to evaluate the usefulness of the sequencing step including FCoV-RNA-positive cats with and without FIP. A negative result cannot be used to exclude the disease, especially when only serum/plasma samples are available

    Supplementary Material_Version 2

    No full text
    <p>Cp values retrieved from the endogenous quality control (18S rRNA gene) as well as Cp values for the detection of FCoV RNA (7b gene).</p
    corecore