5 research outputs found

    Rarest rainfall events will see the greatest relative increase in magnitude under future climate change

    No full text
    Future rainfall extremes are projected to increase with global warming according to theory and climate models, but common (annual) and rare (decennial or centennial) extremes could be affected differently. Here, using 25 models from the Coupled Model Intercomparison Project Phase 6 driven by a range of plausible scenarios of future greenhouse gas emissions, we show that the rarer the event, the more likely it is to increase in a future climate. By the end of this century, daily land rainfall extremes could increase in magnitude between 10.5% and 28.2% for annual events, and between 13.5% and 38.3% for centennial events, for low and high emission scenarios respectively. The results are consistent across models though with regional variation, but the underlying mechanisms remain to be determined.Water Resource

    Evaluation of the Drivers Responsible for Flooding in Africa

    No full text
    Africa is severely affected by floods, with an increasing vulnerability to these events in the most recent decades. Our improved preparation against and response to this hazard would benefit from an enhanced understanding of the physical processes at play. Here, a database of 399 African stream gauges is used to analyze the seasonality of observed annual maximum flood, precipitation and soil moisture between 1981 and 2018. The database includes a total of 11,302 flood events, covering most African regions. The analysis is based on directional statistics to compare the annual maximum river flood with annual maximum rainfall and soil moisture. The results show that the annual maximum flood in most areas is more strongly linked to the annual peak of soil moisture than of annual maximum precipitation. In addition, the interannual variability of flood magnitudes is better explained by the variability of annual maximum soil moisture than by the variability in the annual maximum precipitation. These results have important implications for flood forecasting and the analysis of the long-term evolution of these hydrological hazards in relation with their drivers.Water Resource

    Historical Shifts in Seasonality and Timing of Extreme Precipitation

    No full text
    Global warming impacts the hydrological cycle, affecting the seasonality and timing of extreme precipitation. Understanding historical changes in extreme precipitation occurrence is crucial for assessing their impacts. This study uses relative entropy to analyze historical changes in seasonality and timing of extreme daily precipitation occurrences on the global domain for 63 years of fifth generation of the European Reanalysis reanalysis data. Our analysis reveals distinct regional patterns of change. During the second half of the 20th century, Africa and Asia experienced high clustering of precipitation extremes. Over the past 60 years, clustering increased in Africa while becoming more spread out in Asia. North America and Australia had initially lower clustering and showed slight increases over time. Extreme events in extra-tropical land regions mainly occurred in summer, with modest shifts in timing. These findings have implications for risk assessments of natural hazard like flash floods and landslides, emphasizing the necessity for region-specific adaptation strategies.Water Resource

    On the relation between antecedent basin conditions and runoff coefficient for European floods

    No full text
    The event runoff coefficient (i.e. the ratio between event runoff and precipitation that originated the runoff) is a key factor for understanding basin response to precipitation events. Runoff coefficient depends on precipitation intensity and duration but also on specific basin geohydrology attributes (including soil type, geology, land cover, topography) and last but not least, antecedent (or pre-storm) conditions (i.e., the amount of water stored in the different hydrological compartments, like the river, groundwater, soil and snowpack). The relation between runoff coefficient and basin pre-storm conditions is critical for flood forecasting, yet, the understanding of where, when and how much basin pre-storm conditions control runoff coefficients is still an open question. Here, we tested the control of basin pre-storm conditions on runoff coefficient for 60620 flood events across 284 basins in Europe. To do so, we derived basin pre-storm conditions from different proxies, namely: antecedent precipitation; surface and root zone soil moisture from hydrological models, reanalyses and land surface models also ingesting satellite observations; pre-storm river discharge, and pre-storm total water storage anomalies. We evaluated the coupling strength between runoff coefficient and pre-storm conditions proxies in relation to five classes of European basins, defined based on land use and soil type (as indexed by the Soil Conservation Service curve number CN), topography, hydrology and long-term climate and tested their ability to explain stormflow volume variability. We found that precipitation explains relatively well the stormflow volumes for both small and large events but not very well the peak discharge, especially for large floods. The runoff coefficient of events shows different distributions for the five different classes and correlates well with deep soil storages (such as root-zone soil moisture and pre-storm total water storage anomalies), pre-storm river discharge, and pre-storm snow water equivalent. Overall, these correlations depend on the class. Poor correlations are found against antecedent precipitation index despite its wide use in the hydrological community. Seasonal and interannual climate variability exert a key role on the coupling strength between runoff coefficient and pre-storm conditions by inducing sharp changes in the correlation with season and climate. These results increase our understanding of the coupling between pre-storm conditions and runoff coefficients. This will aid flood forecasting, hydrological and land surface model calibration, and data assimilation. Furthermore, these findings can help us to better interpret future flood projections in Europe based on expected changes in long and short-term climatic drivers.Water Resource

    PPDIST, global 0.1° daily and 3-hourly precipitation probability distribution climatologies for 1979–2018

    No full text
    We introduce the Precipitation Probability DISTribution (PPDIST) dataset, a collection of global high-resolution (0.1°) observation-based climatologies (1979–2018) of the occurrence and peak intensity of precipitation (P) at daily and 3-hourly time-scales. The climatologies were produced using neural networks trained with daily P observations from 93,138 gauges and hourly P observations (resampled to 3-hourly) from 11,881 gauges worldwide. Mean validation coefficient of determination (R2) values ranged from 0.76 to 0.80 for the daily P occurrence indices, and from 0.44 to 0.84 for the daily peak P intensity indices. The neural networks performed significantly better than current state-of-the-art reanalysis (ERA5) and satellite (IMERG) products for all P indices. Using a 0.1 mm 3 h−1 threshold, P was estimated to occur 12.2%, 7.4%, and 14.3% of the time, on average, over the global, land, and ocean domains, respectively. The highest P intensities were found over parts of Central America, India, and Southeast Asia, along the western equatorial coast of Africa, and in the intertropical convergence zone. The PPDIST dataset is available via www.gloh2o.org/ppdist.Water Resource
    corecore