1,585 research outputs found

    Three- and four-body interactions in colloidal systems

    Full text link
    Three-body and four-body interactions have been directly measured in a colloidal system comprised of three (or four) charged colloidal particles. Two of the particles have been confined by means of a scanned laser tweezers to a line-shaped optical trap where they diffused due to thermal fluctuations. By means of an additional focused optical trap a third particle has been approached and attractive three-body interactions have been observed. These observations are in qualitative agreement with additionally performed nonlinear Poissson-Boltzmann calculations. Two configurations of four particles have been studied experimentally as well and in both cases a repulsive four-body interaction term has been observed

    Measuring the equation of state of a hard-disc fluid

    Full text link
    We use video microscopy to study a two-dimensional (2D) model fluid of charged colloidal particles suspended in water and compute the pressure from the measured particle configurations. Direct experimental control over the particle density by means of optical tweezers allows the precise measurement of pressure as a function of density. We compare our data with theoretical predictions for the equation of state, the pair-correlation function and the compressibility of a hard-disc fluid and find good agreement, both for the fluid and the solid phase. In particular the location of the transition point agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio

    Current driven switching of magnetic layers

    Full text link
    The switching of magnetic layers is studied under the action of a spin current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin valve. We find that the main contribution to the switching comes from the non-equilibrium exchange interaction between the ferromagnetic layers. This interaction defines the magnetic configuration of the layers with minimum energy and establishes the threshold for a critical switching current. Depending on the direction of the critical current, the interaction changes sign and a given magnetic configuration becomes unstable. To model the time dependence of the switching process, we derive a set of coupled Landau-Lifshitz equations for the ferromagnetic layers. Higher order terms in the non-equilibrium exchange coupling allow the system to evolve to its steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.

    Injection of photoelectrons into dense argon gas

    Full text link
    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted to Plasma Sources Science and Technolog

    The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction across a tunneling junction out of equilibrium

    Full text link
    The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic ss-dd spin impurities across a tunneling junction is studied when the system is driven out of equilibrium through biasing the junction. The nonequilibrium situation is handled with the Keldysh time-loop perturbation formalism in conjunction with appropriate coupling methods for tunneling systems due to Caroli and Feuchtwang. We find that the presence of a nonequilibrium bias across the junction leads to an interference of several fundamental oscillations, such that in this tunneling geometry, it is possible to tune the interaction between ferromagnetic and antiferromagnetic coupling at a fixed impurity configuration, simply by changing the bias across the junction. Furthermore, it is shown that the range of the RKKY interaction is altered out of equilibrium, such that in particular the interaction energy between two slabs of spins scales extensively with the thickness of the slabs in the presence of an applied bias.Comment: 38 pages revtex preprint; 5 postscript figures; submitted to Phys. Rev.

    Testing the relevance of effective interaction potentials between highly charged colloids in suspension

    Full text link
    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behavior, pressure and compressibility of highly charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models

    Self-similar magnetoresistance of Fibonacci ultrathin magnetic films

    Full text link
    We study numerically the magnetic properties (magnetization and magnetoresistance) of ultra-thin magnetic films (Fe/Cr) grown following the Fibonacci sequence. We use a phenomenological model which includes Zeeman, cubic anisotropy, bilinear and biquadratic exchange energies. Our physical parameters are based on experimental data recently reported, which contain biquadratic exchange coupling with magnitude comparable to the bilinear exchange coupling. When biquadratic exchange coupling is sufficiently large a striking self-similar pattern emerges.Comment: 5 pages, 5 EPS figures, REVTeX, accepted for publication in Phys. Rev.

    Coexistence of hexatic and isotropic phases in two-dimensional Yukawa systems

    Full text link
    We have performed Brownian dynamics simulations on melting of two-dimensional colloidal crystal in which particles interact with Yukawa potential. The pair correlation function and bond-orientational correlation function was calculated in the Yukawa system. An algebraic decay of the bond orientational correlation function was observed. By ruling out the coexistence region, only a unstable hexatic phase was found in the Yukawa systems. But our work shows that the melting of the Yukawa systems is a two-stage melting not consist with the KTHNY theory and the isotropic liquid and the hexatic phase coexistence region was found. Also we have studied point defects in two-dimensional Yukawa systems.Comment: 9 pages, 8 figures. any comments are welcom

    Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis

    Full text link
    We extend our previous study of the polarization dependence of the nonlinear optical response to the case of magnetic surfaces and buried magnetic interfaces. We calculate for the longitudinal and polar configuration the nonlinear magneto-optical Kerr rotation angle. In particular, we show which tensor elements of the susceptibilities are involved in the enhancement of the Kerr rotation in nonlinear optics for different configurations and we demonstrate by a detailed analysis how the direction of the magnetization and thus the easy axis at surfaces and buried interfaces can be determined from the polarization dependence of the nonlinear magneto-optical response, since the nonlinear Kerr rotation is sensitive to the electromagnetic field components instead of merely the intensities. We also prove from the microscopic treatment of spin-orbit coupling that there is an intrinsic phase difference of 90^{\circ } between tensor elements which are even or odd under magnetization reversal in contrast to linear magneto-optics. Finally, we compare our results with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the magnetic structure and in particular the magnetic easy axis in films and at multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure

    Theory for Spin-Polarized Oscillations in Nonlinear Magneto-Optics due to Quantum Well States

    Full text link
    Using an electronic tight-binding theory we calculate the nonlinear magneto-optical response from an x-Cu/1Fe/Cu(001) film as a function of frequency and Cu overlayer thickness (x=3 ... 25). We find very strong spin-polarized quantum well oscillations in the nonlinear magneto-optical Kerr effect (NOLIMOKE). These are enhanced by the large density of Fe dd states close to the Fermi level acting as intermediate states for frequency doubling. In good agreement with experiment we find two oscillation periods of 6-7 and 11 monolayers the latter being more pronounced.Comment: 12 pages, Revtex, 3 postscript figure
    corecore