234 research outputs found

    Classical and quantum massive cosmology for the open FRW universe

    Full text link
    In an open Friedmann-Robertson-Walker (FRW) space background, we study the classical and quantum cosmological models in the framework of the recently proposed nonlinear massive gravity theory. Although the constraints which are present in this theory prevent it from admitting the flat and closed FRW models as its cosmological solutions, for the open FRW universe, it is not the case. We have shown that, either in the absence of matter or in the presence of a perfect fluid, the classical field equations of such a theory adopt physical solutions for the open FRW model, in which the mass term shows itself as a cosmological constant. These classical solutions consist of two distinguishable branches: One is a contacting universe which tends to a future singularity with zero size, while another is an expanding universe having a past singularity from which it begins its evolution. A classically forbidden region separates these two branches from each other. We then employ the familiar canonical quantization procedure in the given cosmological setting to find the cosmological wave functions. We use the resulting wave function to investigate the possibility of the avoidance of classical singularities due to quantum effects. It is shown that the quantum expectation values of the scale factor, although they have either contracting or expanding phases like their classical counterparts, are not disconnected from each other. Indeed, the classically forbidden region may be replaced by a bouncing period in which the scale factor bounces from the contraction to its expansion eras. Using the Bohmian approach of quantum mechanics, we also compute the Bohmian trajectory and the quantum potential related to the system, which their analysis shows are the direct effects of the mass term on the dynamics of the universe.Comment: 18 pages, 7 figures, typos corrected, refs. adde

    Relativistic contraction and related effects in noninertial frames

    Get PDF
    Although there is no relative motion among different points on a rotating disc, each point belongs to a different noninertial frame. This fact, not recognized in previous approaches to the Ehrenfest paradox and related problems, is exploited to give a correct treatment of a rotating ring and a rotating disc. Tensile stresses are recovered, but, contrary to the prediction of the standard approach, it is found that an observer on the rim of the disc will see equal lengths of other differently moving objects as an inertial observer whose instantaneous position and velocity are equal to that of the observer on the rim. The rate of clocks at various positions, as seen by various observers, is also discussed. Some results are generalized for observers arbitrarily moving in a flat or a curved spacetime. The generally accepted formula for the space line element in a non-time-orthogonal frame is found inappropriate in some cases. Use of Fermi coordinates leads to the result that for any observer the velocity of light is isotropic and is equal to cc, providing that it is measured by propagating a light beam in a small neighborhood of the observer.Comment: 15 pages, significantly revised version, title changed, to appear in Phys. Rev.

    Entropy of gravitationally collapsing matter in FRW universe models

    Full text link
    We look at a gas of dust and investigate how its entropy evolves with time under a spherically symmetric gravitational collapse. We treat the problem perturbatively and find that the classical thermodynamic entropy does actually increase to first order when one allows for gravitational potential energy to be transferred to thermal energy during the collapse. Thus, in this situation there is no need to resort to the introduction of an intrinsic gravitational entropy in order to satisfy the second law of thermodynamics.Comment: 9 pages, 4 figures. Major changes from previous version. We consider only thermodynamic entropy in this version. Published in PR

    Time-Symmetrization and Isotropization of Stiff-Fluid Kantowski-Sachs Universes

    Get PDF
    It is shown that growing-entropy stiff-fluid Kantowski-Sachs universes become time-symmetric (if they start with time-asymmetric phase) and isotropize. Isotropization happens without any inflationary era during the evolution since there is no cosmological term here. It seems that this approach is an alternative to inflation since the universe gets bigger and bigger approaching 'flatness'.Comment: 9 pages, no figure

    Magnetohydrodynamics in the Inflationary Universe

    Get PDF
    Magnetohydrodynamic (MHD) waves are analysed in the early Universe, in the inflationary era, assuming the Universe to be filled with a nonviscous fluid of the Zel'dovich type (p=ρp=\rho) in a metric of the de Sitter form. A spatially uniform, time dependent, magnetic field B0{\bf B_0} is assumed to be present. The Einstein equations are first solved to give the time dependence of the scale factor, assuming that the matter density, but not the magnetic field, contribute as source terms. The various modes are thereafter analysed; they turn out to be essentially of the same kind as those encountered in conventional nongravitational MHD, although the longitudinal magnetosonic wave is not interpretable as a physical energy-transporting wave as the group velocity becomes superluminal. We determine the phase speed of the various modes; they turn out to be scale factor independent. The Alfv\'{e}n velocity of the transverse magnetohydrodynamic wave becomes extremely small in the inflationary era, showing that the wave is in practice 'frozen in'.Comment: 19 pages, LaTeX, no figures. Minor additions to the Summary section and Acknowledgments section. Two new references. Version to appear in Phys. Rev.

    The Relative Space: Space Measurements on a Rotating Platform

    Full text link
    We introduce here the concept of relative space, an extended 3-space which is recognized as the only space having an operational meaning in the study of the space geometry of a rotating disk. Accordingly, we illustrate how space measurements are performed in the relative space, and we show that an old-aged puzzling problem, that is the Ehrenfest's paradox, is explained in this purely relativistic context. Furthermore, we illustrate the kinematical origin of the tangential dilation which is responsible for the solution of the Ehrenfest's paradox.Comment: 14 pages, 2 EPS figures, LaTeX, to appear in the European Journal of Physic

    Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation

    Get PDF
    We study the Einstein-Klein-Gordon equations for a convex positive potential in a Bianchi I, a Bianchi III and a Kantowski-Sachs universe. After analysing the inherent properties of the system of differential equations, the study of the asymptotic behaviors of the solutions and their stability is done for an exponential potential. The results are compared with those of Burd and Barrow. In contrast with their results, we show that for the BI case isotropy can be reached without inflation and we find new critical points which lead to new exact solutions. On the other hand we recover the result of Burd and Barrow that if inflation occurs then isotropy is always reached. The numerical integration is also done and all the asymptotical behaviors are confirmed.Comment: 22 pages, 12 figures, Self-consistent Latex2e File. To be published in Phys. Rev.

    Gravitational Entropy and Quantum Cosmology

    Get PDF
    We investigate the evolution of different measures of ``Gravitational Entropy'' in Bianchi type I and Lema\^itre-Tolman universe models. A new quantity behaving in accordance with the second law of thermodynamics is introduced. We then go on and investigate whether a quantum calculation of initial conditions for the universe based upon the Wheeler-DeWitt equation supports Penrose's Weyl Curvature Conjecture, according to which the Ricci part of the curvature dominates over the Weyl part at the initial singularity of the universe. The theory is applied to the Bianchi type I universe models with dust and a cosmological constant and to the Lema\^itre-Tolman universe models. We investigate two different versions of the conjecture. First we investigate a local version which fails to support the conjecture. Thereafter we construct a non-local entity which shows more promising behaviour concerning the conjecture.Comment: 20 pages, 7 ps figure

    Relativistic anisotropic charged fluid spheres with varying cosmological constant

    Full text link
    Static spherically symmetric anisotropic source has been studied for the Einstein-Maxwell field equations assuming the erstwhile cosmological constant Λ \Lambda to be a space-variable scalar, viz., Λ=Λ(r) \Lambda = \Lambda(r) . Two cases have been examined out of which one reduces to isotropic sphere. The solutions thus obtained are shown to be electromagnetic in origin as a particular case. It is also shown that the generally used pure charge condition, viz., ρ+pr=0 \rho + p_r = 0 is not always required for constructing electromagnetic mass models.Comment: 15 pages, 3 eps figure

    Bianchi type I cyclic cosmology from Lie-algebraically deformed phase space

    Full text link
    We study the effects of noncommutativity, in the form of a Lie-algebraically deformed Poisson commutation relations, on the evolution of a Bianchi type I cosmological model with a positive cosmological constant. The phase space variables turn out to correspond to the scale factors of this model in xx, yy and zz directions. According to the conditions that the structure constants (deformation parameters) should satisfy, we argue that there are two types of noncommutative phase space with Lie-algebraic structure. The exact classical solutions in commutative and type I noncommutative cases are presented. In the framework of this type of deformed phase space, we investigate the possibility of building a Bianchi I model with cyclic scale factors in which the size of the universe in each direction experiences an endless sequence of contractions and re-expansions. We also obtain some approximate solutions for the type II noncommutative structure by numerical methods and show that the cyclic behavior is repeated as well. These results are compared with the standard commutative case, and similarities and differences of these solutions are discussed.Comment: 13 pages, to appear in PRD, typos corrected, Refs. adde
    corecore