10 research outputs found

    Critical Role of LTB4/BLT1 in IL-23–Induced Synovial Inflammation and Osteoclastogenesis via NF-κB

    No full text
    IL-23 activates the synthesis and production of leukotriene B4 (LTB4) in myeloid cells, which modulate inflammatory arthritis. In this study we investigated the role of LTB4 and its receptor LTB4R1 (BLT1) in synovial inflammation and osteoclast differentiation. Specifically, we used IL-23 in vivo gene transfer to induce arthritis in mice and showed that elevated serum LTB4 and synovial expression of 5-lipoxygenase correlated with increased disease severity by histological evaluation and paw swelling compared with GFP gene transfer controls. To further investigate the effect of the LTB4 pathway in bone loss, we performed osteoclast differentiation assays by stimulating with M-CSF and receptor activator of NF-κB ligand bone marrow cells derived from BLT1+/+ and/or BLT1-/- mice and used quantitative PCR for gene expression analysis in terminally differentiated osteoclasts. Deficiency in BLT1 resulted in the upregulation of osteoclast-related genes and an increase in the formation of giant, multinucleated TRAP+ cells capable of F-actin ring formation. Additionally, BLT1 deficiency showed an increase of phosphorylated NF-κB and phosphorylated IκB levels in osteoclasts. We also performed real-time calcium imaging to study the effect of BLT1 deficiency in receptor activator of NF-κ-B ligand-induced activation of intracellular calcium flux in vitro. Our data show that LTB4 and its receptor BLT1 exacerbate synovial inflammation in vivo and bone resorption in vitro, suggesting that LTB4 and BLT1 could be effectively targeted for the treatment of musculoskeletal diseases

    Critical Role of LTB 4

    No full text

    The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke.

    No full text
    Activated microglia/macrophages significantly contribute to the secondary inflammatory damage in ischemic stroke. Cultured neonatal microglia express the K+ channels Kv1.3 and KCa3.1, both of which have been reported to be involved in microglia-mediated neuronal killing, oxidative burst and cytokine production. However, it is questionable whether neonatal cultures accurately reflect the K+ channel expression of activated microglia in the adult brain. We here subjected mice to middle cerebral artery occlusion with eight days of reperfusion and patch-clamped acutely isolated microglia/macrophages. Microglia from the infarcted area exhibited higher densities of K+ currents with the biophysical and pharmacological properties of Kv1.3, KCa3.1 and Kir2.1 than microglia from non-infarcted control brains. Similarly, immunohistochemistry on human infarcts showed strong Kv1.3 and KCa3.1 immunoreactivity on activated microglia/macrophages. We next investigated the effect of genetic deletion and pharmacological blockade of KCa3.1 in reversible middle cerebral artery occlusion. KCa3.1-/- mice and wild-type mice treated with the KCa3.1 blocker TRAM-34 exhibited significantly smaller infarct areas on day-8 after middle cerebral artery occlusion and improved neurological deficit. Both manipulations reduced microglia/macrophage activation and brain cytokine levels. Our findings suggest KCa3.1 as a pharmacological target for ischemic stroke. Of potential, clinical relevance is that KCa3.1 blockade is still effective when initiated 12 h after the insult
    corecore