2,008 research outputs found

    Irreducible Hamiltonian BRST-anti-BRST symmetry for reducible systems

    Full text link
    An irreducible Hamiltonian BRST-anti-BRST treatment of reducible first-class systems based on homological arguments is proposed. The general formalism is exemplified on the Freedman-Townsend model.Comment: LaTeX 2.09, 35 page

    Coordination of Foliar and Wood Anatomical Traits Contributes to Tropical Tree Distributions and Productivity along the Malay-Thai Peninsula

    Get PDF
    Drought is a critical factor in plant species distributions. Much research points to its relevance even in moist tropical regions. Recent studies have begun to elucidate mechanisms underlying the distributions of tropical tree species with respect to drought; however, how such desiccation tolerance mechanisms correspond with the coordination of hydraulic and photosynthetic traits in determining species distributions with respect to rainfall seasonality deserves attention. In the present study, we used a common garden approach to quantify inherent differences in wood anatomical and foliar physiological traits in 21 tropical tree species with either widespread (occupying both seasonal and aseasonal climates) or southern (restricted to aseasonal forests) distributions with respect to rainfall seasonality. Use of congeneric species pairs and phylogenetically independent contrast analyses allowed examination of this question in a phylogenetic framework. Widespread species opted for wood traits that provide biomechanical support and prevent xylem cavitation and showed associated reductions in canopy productivity and consequently growth rates compared with southern species. These data support the hypothesis that species having broader distributions with respect to climatic variability will be characterized by traits conducive to abiotic stress tolerance. This study highlights the importance of the well-established performance vs. stress tolerance trade-off as a contributor to species distributions at larger scales

    Unconventional continuous phase transition in a three dimensional dimer model

    Full text link
    Phase transitions occupy a central role in physics, due both to their experimental ubiquity and their fundamental conceptual importance. The explanation of universality at phase transitions was the great success of the theory formulated by Ginzburg and Landau, and extended through the renormalization group by Wilson. However, recent theoretical suggestions have challenged this point of view in certain situations. In this Letter we report the first large-scale simulations of a three-dimensional model proposed to be a candidate for requiring a description beyond the Landau-Ginzburg-Wilson framework: we study the phase transition from the dimer crystal to the Coulomb phase in the cubic dimer model. Our numerical results strongly indicate that the transition is continuous and are compatible with a tricritical universality class, at variance with previous proposals.Comment: 4 pages, 3 figures; v2: minor changes, published versio

    Placement optimal de caméras contraintes pour la synthèse de nouvelles vues

    Get PDF
    International audienceNous étudions le problème du placement optimal sous contraintes, de plusieurs caméras, pour la synthèse de nouvelles vues. Une telle configuration optimale est définie comme celle qui minimise l'incertitude de projection des pixels des caméras de prise de vue sur la vue à synthétiser. Le rendu de cette vue est souvent précédé d'une phase de reconstruction 3D approximative. Nous dérivons la matrice de covariance associée à l'incertitude sur la géométrie, puis nous propageons l'erreur sur le plan de la nouvelle vue. Nous observons l'influence de l'interoculaire et de la distance focale des caméras sur l'erreur projetée, pour des distributions de points aléatoires à diverses profondeurs

    Towards Interpretable Deep Learning Models for Knowledge Tracing

    Full text link
    As an important technique for modeling the knowledge states of learners, the traditional knowledge tracing (KT) models have been widely used to support intelligent tutoring systems and MOOC platforms. Driven by the fast advancements of deep learning techniques, deep neural network has been recently adopted to design new KT models for achieving better prediction performance. However, the lack of interpretability of these models has painfully impeded their practical applications, as their outputs and working mechanisms suffer from the intransparent decision process and complex inner structures. We thus propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models. Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model by backpropagating the relevance from the model's output layer to its input layer. The experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions, and partially validate the computed relevance scores from both question level and concept level. We believe it can be a solid step towards fully interpreting the DLKT models and promote their practical applications in the education domain

    Triplectic Quantization of W2 gravity

    Get PDF
    The role of one loop order corrections in the triplectic quantization is discussed in the case of W2 theory. This model illustrates the presence of anomalies and Wess Zumino terms in this quantization scheme where extended BRST invariance is represented in a completely anticanonical form.Comment: 10 pages, no figure

    A Frequency-Controlled Magnetic Vortex Memory

    Get PDF
    Using the ultra low damping NiMnSb half-Heusler alloy patterned into vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile memory controlled by the frequency. A perpendicular bias magnetic field is used to split the frequency of the vortex core gyrotropic rotation into two distinct frequencies, depending on the sign of the vortex core polarity p=±1p=\pm1 inside the dot. A magnetic resonance force microscope and microwave pulses applied at one of these two resonant frequencies allow for local and deterministic addressing of binary information (core polarity)

    Hamiltonian BRST-anti-BRST Theory

    Get PDF
    The hamiltonian BRST-anti-BRST theory is developed in the general case of arbitrary reducible first class systems. This is done by extending the methods of homological perturbation theory, originally based on the use of a single resolution, to the case of a biresolution. The BRST and the anti-BRST generators are shown to exist. The respective links with the ordinary BRST formulation and with the sp(2) sp(2) -covariant formalism are also established.Comment: 34 pages, Latex fil
    • …
    corecore