58 research outputs found

    Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program

    Get PDF
    Herpesvirus infection initiates a range of perturbations in the host cell, which remain poorly understood at the level of individual cells. Here, we quantify the transcriptome of single human primary fibroblasts during the first hours of lytic infection with HSV-1. By applying a generalizable analysis scheme, we define a precise temporal order of early viral gene expression and propose a set-wise emergence of viral genes. We identify host cell genes and pathways relevant for infection by combining three different computational approaches: gene and pathway overdispersion analysis, prediction of cell-state transition probabilities, as well as future cell states. One transcriptional program, which correlates with increased resistance to infection, implicates the transcription factor NRF2. Consequently, Bardoxolone methyl and Sulforaphane, two known NRF2 agonists, impair virus production, suggesting that NRF2 activation restricts viral infection. Our study provides insights into early stages of HSV-1 infection and serves as a general blueprint for the investigation of heterogeneous cell states in virus infection

    The B-Cell Specific Transcription Factor, Oct-2, Promotes Epstein-Barr Virus Latency by Inhibiting the Viral Immediate-Early Protein, BZLF1

    Get PDF
    The Epstein-Barr virus (EBV) latent-lytic switch is mediated by the BZLF1 immediate-early protein. EBV is normally latent in memory B cells, but cellular factors which promote viral latency specifically in B cells have not been identified. In this report, we demonstrate that the B-cell specific transcription factor, Oct-2, inhibits the function of the viral immediate-early protein, BZLF1, and prevents lytic viral reactivation. Co-transfected Oct-2 reduces the ability of BZLF1 to activate lytic gene expression in two different latently infected nasopharyngeal carcinoma cell lines. Furthermore, Oct-2 inhibits BZLF1 activation of lytic EBV promoters in reporter gene assays, and attenuates BZLF1 binding to lytic viral promoters in vivo. Oct-2 interacts directly with BZLF1, and this interaction requires the DNA-binding/dimerization domain of BZLF1 and the POU domain of Oct-2. An Oct-2 mutant (Δ262–302) deficient for interaction with BZLF1 is unable to inhibit BZLF1-mediated lytic reactivation. However, an Oct-2 mutant defective for DNA-binding (Q221A) retains the ability to inhibit BZLF1 transcriptional effects and DNA-binding. Importantly, shRNA-mediated knockdown of endogenous Oct-2 expression in several EBV-positive Burkitt lymphoma and lymphoblastoid cell lines increases the level of lytic EBV gene expression, while decreasing EBNA1 expression. Moreover, treatments which induce EBV lytic reactivation, such as anti-IgG cross-linking and chemical inducers, also decrease the level of Oct-2 protein expression at the transcriptional level. We conclude that Oct-2 potentiates establishment of EBV latency in B cells

    Protein truncation is required for the activation of the c-myb proto-oncogene.

    No full text

    The Epstein-Barr Nuclear Antigen 2 (EBNA2) Transactivates the Terminal Protein 1 Gene by Interacting with a Cis-Element Located in the Promoter Region.

    No full text
    The Epstein-Barr virus protein EBNA2 acts as a transcriptional activator of cellular and viral genes and plays a crucial role in the immortalization of human primary B-cells by EBV. We have shown previously that EBNA2 transactivates the promoters of the latent membrane antigens LMP, TP1 and TP2. The promoter of the TP1 gene was chosen as a model system to study the molecular mechanism of EBNA2 mediated transactivation. To identify an EBNA2 dependent cis-acting element, various TP1 promoter-reporter gene constructs were transfected in the absence and presence of an EBNA2 expression vector into the established B-cell line BL41-P3HR1. We were able to delineate an 81 bp EBNA2 responsive region between -258 and -177 relative to the TP1 RNA start site. The element worked in either orientation and could mediate EBNA2 dependent transactivation on a heterologous promoter. Electrophoretic mobility shift assays revealed three specific protein-DNA complexes formed with sequences of the EBNA2 responsive element. Two of these were not cell type specific, but the third was detected only in EBNA2 positive cell extracts. Gel-shift analysis in the presence of EBNA2 specific monoclonal antibodies revealed that EBNA2 is a component of the third complex. Thus, these experiments demonstrate that EBNA2 interacts with an EBNA2 responsive cis-element of the TP1 promoter
    • …
    corecore