186 research outputs found

    Site Communication in Direct Formation of H2O2 over Single-Atom Pd@Au Nanoparticles

    Get PDF
    Single atom alloy catalysts offer possibilities to obtain turnover frequencies and selectivities unattainable by their monometallic counterparts. One example is direct formation of H2O2 from O2 and H2 over Pd embedded in Au hosts. Here, a first-principles-based kinetic Monte Carlo approach is developed to investigate the catalytic performance of Pd embedded in Au nanoparticles in an aqueous solution. The simulations reveal an efficient site separation where Pd monomers act as active centers for H2 dissociation, whereas H2O2 is formed over undercoordinated Au sites. After dissociation, atomic H may undergo an exothermic redox reaction, forming a hydronium ion in the solution and a negative charge on the surface. H2O2 is preferably formed from reactions between dissolved H+ and oxygen species on the Au surface. The simulations show that tuning the nanoparticle composition and reaction conditions can enhance the selectivity toward H2O2. The outlined approach is general and applicable for a range of different hydrogenation reactions over single atom alloy nanoparticles

    Ensemble Effects in Adsorbate-Adsorbate Interactions in Microkinetic Modeling

    Get PDF
    Adsorbates on a surface experience lateral interactions that result in a distribution of adsorption energies. The adsorbate-adsorbate interactions are known to affect the kinetics of surface reactions, which motivates efforts to develop models that accurately account for the interactions. Here, we use density functional theory (DFT) calculations combined with Monte Carlo simulations to investigate how the distribution of adsorbates affects adsorption and desorption of CO from Pt(111). We find that the mean of the average adsorption energy determines the adsorption process, whereas the desorption process can be described by the low energy part of the adsorbate stability distribution. The simulated results are in very good agreement with calorimetry and temperature-programmed desorption experiments and provide a guideline of how to include adsorbate-adsorbate interactions in DFT-based mean-field kinetic models

    Structure-Dependent Strain Effects

    Get PDF
    Density functional theory calculations of atomic and molecular adsorption on (111) and (100) metal surfaces reveal marked surface and structure dependent effects of strain. Adsorption in three-fold hollow sites is found to be destabilized by compressive strain whereas the reversed trend is commonly valid for adsorption in four-fold sites. The effects, which are qualitatively explained using a simple two-orbital model, provide insights on how to modify chemical properties by strain design

    A dimer path for CO dissociation on PtSn

    Get PDF
    Density functional theory calculations are used to investigate CO adsorption, dissociation and SnOX formation on Pt3Sn. We find that direct CO dissociation is prevented by high activation energies. An energetically feasible path is instead CO dimer formation followed by C-O bond cleavage. Dimers are formed in the presence of Sn adatoms which effectively stabilize anionic OCCO- species. The presence of Sn adatoms is crucial as dimers are unstable on Pt-only systems. The proposed mechanism may explain recent experimental observations of SnOX and C-C formation as PtxSn is exposed to CO

    Hydrogen adsorption on In2O3(111) and In2O3(110)

    Get PDF
    In2O3-Based catalysts have been measured to have a high activity for CO2 hydrogenation to H3COH. Here, we use density functional theory calculations with and without Hubbard-U corrections in combination with ab initio thermodynamics to investigate the dissociative adsorption of H2 over In2O3(111) and In2O3(110). H2 is found to dissociate heterolytically with a moderate barrier on both facets. Diffusion of hydrogen leads to the preferred homolytic adsorption configuration. Vacancy formation by water formation is thermodynamically preferred at high hydrogen coverages. Both surfaces are found to be hydroxylated at typical reaction conditions with the highest coverage predicted for In2O3(110). O 1s core level shifts are calculated for different coverages. The hydroxylated surfaces show two distinct shifts corresponding to different types of OH-groups. The presence of surface oxygen vacancies is not visible in the O 1s signatures. The results show that hydroxylation of the surfaces results in changes of the oxidation state of In-ions, which suggests that the redox properties on In2O3 are important for catalytic reduction of CO2 to added value chemicals

    Hydrogen Adsorption on Pd–In Intermetallic Surfaces

    Get PDF
    It has recently been shown that CO 2 hydrogenation to methanol over PdIn and In 2O 3 depends critically on the adsorption energy of hydrogen. Here we use density functional theory calculations to investigate hydrogen adsorption over Pd–In intermetallic compound surfaces with different Pd:In ratios. The electronic structure and properties of hydrogen adsorption are investigated for a range of surface facets and compared to the corresponding results for the pure parent metals and Cu. Increased In content is found to shift the Pd(d) density of states away from the Fermi level, making the intermetallic Pd–In compounds to appear “Cu-like”. We find a linear correlation between the hydrogen binding energy and the d-band center of surface Pd atoms. Understanding of how the hydrogen adsorption energy depends on composition and structure provides a possibility to enhance the performance of CO 2 hydrogenation catalysts to methanol

    CO2 adsorption on hydroxylated In2O3(110)

    Get PDF
    Catalytic synthesis of methanol from CO2 is one route to produce added-value chemicals from a greenhouse gas. Here, density functional theory calculations and ab initio thermodynamics are used to study CO2 adsorption on In2O3(110) in the presence of H2 and H2O. We find that the surface is heavily hydroxylated by either H2 or H2O and that hydroxylation promotes H2-induced vacancy formation. Moreover, CO2 adsorbs rather in a CO2- configuration on hydroxylated In2O3(110) than on oxygen vacancy sites. The results suggest that hydroxylation-induced oxidation-state changes of In-ions play a significant role in CO2 adsorption and activation during methanol synthesis

    Can oxygen vacancies in ceria surfaces be measured by O1s photoemission spectroscopy?

    Get PDF
    X-ray photoemission spectroscopy is a standard technique for materials characterization and the O 1s binding energy is commonly measured for oxides. Here we use density functional theory calculations to investigate how the O 1s binding energy in CeO2(111) is influenced by the presence of oxygen vacancies. The case with point vacancies in CeO2(111) is compared to complete reduction to Ce2O3. Reduction of CeO2by oxygen vacancies is found to have a minor effect on the O 1s binding energy. The O 1s binding energy is instead clearly changed when the character of the chemical bond for the considered oxygen atom is modified by, for example, the formation of OH-groups or carbonates

    Simplified Kinetic Model for NH3‑SCR Over Cu‑CHA Based on First‑Principles Calculations

    Get PDF
    Selective catalytic reduction with ammonia as reducing agent (NH3-SCR) is an efficient technology to control NOx emission during oxygen excess. Catalysts based on Cu-chabazite (Cu-CHA) have shown good performance for NH3-SCR with high activity and selectivity at low temperature and good hydrothermal stability. Here, we explore a first-principles based kinetic model to analyze in detail which reaction steps that control the selectivity for N2 and the light-off temperature. Moreover, a simplified kinetic model is developed by fitting lumped kinetic parameters to the full model. The simplified model describes the reaction with high accuracy using only five reaction steps. The present work provides insight into the governing reaction mechanism and stimulates design of knowledge-based Cu-CHA catalysts for NH3-SCR

    Surface steps dominate the water formation on Pd(111) surfaces

    Get PDF
    Water formation is relevant in many technological processes and is also an important model reaction. Although water formation over Pd surfaces is widely studied, questions regarding the active site and the main reaction path (OH* + OH*) or (OH* + H*) are still open. Combining first-principles density functional theory calculations and kinetic Monte Carlo simulations, we find that the reaction rate is dominated by surface steps and point defects over a wide range of conditions. The main reaction path is found to be temperature dependent where the OH* + OH* path dominates at low temperatures, whereas the OH* + H* path is the main path at high temperatures. Steps facilitate the OH* formation, which is the rate limiting step under all conditions. OH* is formed via O* + H* association or OOH* splitting at low temperatures, whereas OH* is exclusively formed via O* + H* association at high temperatures. The results of the first-principles-based kinetic model are in excellent agreement with experimental observations at high and low temperatures as well as different gas-phase compositions
    • …
    corecore