3 research outputs found

    Spectroscopy of 28^{28}Na: shell evolution toward the drip line

    Get PDF
    Excited states in 28^{28}Na have been studied using the β\beta-decay of implanted 28^{28}Ne ions at GANIL/LISE as well as the in-beam γ\gamma-ray spectroscopy at the NSCL/S800 facility. New states of positive (Jπ^{\pi}=3,4+^+) and negative (Jπ^{\pi}=1-5−^-) parity are proposed. The former arise from the coupling between 0d_5/2\_{5/2} protons and a 0d_3/2\_{3/2} neutron, while the latter are due to couplings with 1p_3/2\_{3/2} or 0f_7/2\_{7/2} neutrons. While the relative energies between the Jπ^{\pi}=1-4+^+ states are well reproduced with the USDA interaction in the N=17 isotones, a progressive shift in the ground state binding energy (by about 500 keV) is observed between 26^{26}F and 30^{30}Al. This points to a possible change in the proton-neutron 0d_5/2\_{5/2}-0d_3/2\_{3/2} effective interaction when moving from stability to the drip line. The presence of Jπ^{\pi}=1-4−^- negative parity states around 1.5 MeV as well as of a candidate for a Jπ^{\pi}=5−^- state around 2.5 MeV give further support to the collapse of the N=20 gap and to the inversion between the 0f_7/2\_{7/2} and 1p_3/2\_{3/2} levels below Z=12. These features are discussed in the framework of Shell Model and EDF calculations, leading to predicted negative parity states in the low energy spectra of the 26^{26}F and 25^{25}O nuclei.Comment: Exp\'erience GANIL/LISE et NSCL/S80

    Single-particle strength in neutron-rich 71Cu from the (d,3He) proton pick-up reaction

    No full text
    We have measured the 72Zn(d,3He)71Cu proton pick-up reaction in inverse kinematics at 38 MeV/u. A dedicated set-up was developed to overcome the experimental challenges posed by the low cross section of the reaction and the low energy of the outgoing 3He particles. The excitation-energy spectrum was reconstructed and spectroscopic factors were obtained after analysis of the angular distributions in the finite-range Distorted-Wave Born Approximation (DWBA). The results show that unlike for the \u3c0f5/2 orbital, the \u3c0f7/2 singleparticle strength is not appreciably affected by the addition of neutrons beyond N 40. \ua9 Published under licence by IOP Publishing Ltd
    corecore