12 research outputs found

    Chemical–Genetic Profiling of Imidazo[1,2-a]pyridines and -Pyrimidines Reveals Target Pathways Conserved between Yeast and Human Cells

    Get PDF
    Small molecules have been shown to be potent and selective probes to understand cell physiology. Here, we show that imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines compose a class of compounds that target essential, conserved cellular processes. Using validated chemogenomic assays in Saccharomyces cerevisiae, we discovered that two closely related compounds, an imidazo[1,2-a]pyridine and -pyrimidine that differ by a single atom, have distinctly different mechanisms of action in vivo. 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine was toxic to yeast strains with defects in electron transport and mitochondrial functions and caused mitochondrial fragmentation, suggesting that compound 13 acts by disrupting mitochondria. By contrast, 2-phenyl-3-nitroso-imidazo[1,2-a]pyrimidine acted as a DNA poison, causing damage to the nuclear DNA and inducing mutagenesis. We compared compound 15 to known chemotherapeutics and found resistance required intact DNA repair pathways. Thus, subtle changes in the structure of imidazo-pyridines and -pyrimidines dramatically alter both the intracellular targeting of these compounds and their effects in vivo. Of particular interest, these different modes of action were evident in experiments on human cells, suggesting that chemical–genetic profiles obtained in yeast are recapitulated in cultured cells, indicating that our observations in yeast can: (1) be leveraged to determine mechanism of action in mammalian cells and (2) suggest novel structure–activity relationships

    Hepatoprotective effects of crocin on biochemical and histopathological alterations following acrylamide-induced liver injury in Wistar rats

    No full text
    PubMed ID: 28892787The objective of the present study is the treatment of oxidative damage caused by acrylamide induced oxidative stress in rats with the administration of a strong antioxidant, namely crocin. High acrylamide (AA) levels have genotoxic, carcinogenic and neurotoxic effects on living organisms. In the present study, 40 Wistar rats were randomly divided into four equal groups. These groups were control, acrylamide (25 mg/kg), crocin (50 mg/kg), acrylamide + crocin (25 mg/kg acrylamide and 50 mg/kg crocin) groups. At the end of the application, biochemical and histological variations were examined in liver and blood samples. It was observed that acrylamide administration significantly decreased liver GSH and TAS levels when compared to the control group. On the contrary, it was also observed that AST, ALT, ALP, SOD and CAT activities and TOS and MDA levels increased as a result of acrylamide administration. Histopathological examinations demonstrated inflammatory cell infiltration, hepatocellular necrosis and hemorrhage areas in AA group liver sections. Furthermore, intracytoplasmic vacuolization was detected in hepatocytes. After crocin treatment, it was observed that GSH and TAS levels increased while AST, ALT, ALP, SOD and CAT activities and TOS and MDA levels decreased. Significant decreases were observed in inflammatory cell infiltration and vascular congestion in liver sections and intracytoplasmic vacuolization in hepatocytes after the crocin treatment, while no hepatocellular necrosis and hemorrhages were observed. In the present study, it was demonstrated that crocin treatment removed acrylamide induced liver damage due to the strong antioxidant properties of crocin. © 2017 Elsevier Masson SASThe present study was sponsored by Karabuk University Scientific Research Fund ( KBU-BAP-15/2-YL-010

    Investigation of the protective effects of crocin on acrylamide induced small and large intestine damage in rats

    No full text
    PubMed ID: 29644878We investigated repair of acrylamide (AA) induced damage in intestines by administration of crocin. We used 40 male Wistar rats in four groups of 10 animals: control, AA, crocin, and AA + crocin groups. We investigated biochemical and histological changes to small and large intestine. AA ingestion decreased glutathione (GSH) levels and total antioxidant status (TAS) in the intestine compared to the control group, while superoxide dismutase (SOD) and catalase (CAT) activities, and total oxidant status (TOS) and malondialdehyde (MDA) levels were increased. Villi were shortened and villus degeneration was observed in ileum of the AA group. Degeneration of surface epithelium and Liberkühn crypts were observed in colon sections. GSH and TAS levels increased after administration of AA together with crocin, while SOD and CAT levels and TOS and MDA levels decreased; significant recovery of histological damage also was observed. We found that crocin exhibits protective effects on AA induced small and large intestine damage by inhibiting oxidative stress. © 2018, © 2018 The Biological Stain Commission.Karabük ÜniversitesiThis work was supported by Research Fund of the Karabuk University [KBU-BAP-15/2-YL-010]; Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper

    Contributions of Human Enzymes in Carcinogen Metabolism

    No full text
    corecore