87 research outputs found

    On Dynamic Optimality for Binary Search Trees

    Full text link
    Does there exist O(1)-competitive (self-adjusting) binary search tree (BST) algorithms? This is a well-studied problem. A simple offline BST algorithm GreedyFuture was proposed independently by Lucas and Munro, and they conjectured it to be O(1)-competitive. Recently, Demaine et al. gave a geometric view of the BST problem. This view allowed them to give an online algorithm GreedyArb with the same cost as GreedyFuture. However, no o(n)-competitive ratio was known for GreedyArb. In this paper we make progress towards proving O(1)-competitive ratio for GreedyArb by showing that it is O(\log n)-competitive

    Further Optimal Regret Bounds for Thompson Sampling

    Full text link
    Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the state of the art methods. In this paper, we provide a novel regret analysis for Thompson Sampling that simultaneously proves both the optimal problem-dependent bound of (1+ϵ)ilnTΔi+O(Nϵ2)(1+\epsilon)\sum_i \frac{\ln T}{\Delta_i}+O(\frac{N}{\epsilon^2}) and the first near-optimal problem-independent bound of O(NTlnT)O(\sqrt{NT\ln T}) on the expected regret of this algorithm. Our near-optimal problem-independent bound solves a COLT 2012 open problem of Chapelle and Li. The optimal problem-dependent regret bound for this problem was first proven recently by Kaufmann et al. [ALT 2012]. Our novel martingale-based analysis techniques are conceptually simple, easily extend to distributions other than the Beta distribution, and also extend to the more general contextual bandits setting [Manuscript, Agrawal and Goyal, 2012].Comment: arXiv admin note: substantial text overlap with arXiv:1111.179

    Lower Bounds for the Average and Smoothed Number of Pareto Optima

    Get PDF
    Smoothed analysis of multiobjective 0-1 linear optimization has drawn considerable attention recently. The number of Pareto-optimal solutions (i.e., solutions with the property that no other solution is at least as good in all the coordinates and better in at least one) for multiobjective optimization problems is the central object of study. In this paper, we prove several lower bounds for the expected number of Pareto optima. Our basic result is a lower bound of \Omega_d(n^(d-1)) for optimization problems with d objectives and n variables under fairly general conditions on the distributions of the linear objectives. Our proof relates the problem of lower bounding the number of Pareto optima to results in geometry connected to arrangements of hyperplanes. We use our basic result to derive (1) To our knowledge, the first lower bound for natural multiobjective optimization problems. We illustrate this for the maximum spanning tree problem with randomly chosen edge weights. Our technique is sufficiently flexible to yield such lower bounds for other standard objective functions studied in this setting (such as, multiobjective shortest path, TSP tour, matching). (2) Smoothed lower bound of min {\Omega_d(n^(d-1.5) \phi^{(d-log d) (1-\Theta(1/\phi))}), 2^{\Theta(n)}}$ for the 0-1 knapsack problem with d profits for phi-semirandom distributions for a version of the knapsack problem. This improves the recent lower bound of Brunsch and Roeglin

    Dynamic vs Oblivious Routing in Network Design

    Full text link
    Consider the robust network design problem of finding a minimum cost network with enough capacity to route all traffic demand matrices in a given polytope. We investigate the impact of different routing models in this robust setting: in particular, we compare \emph{oblivious} routing, where the routing between each terminal pair must be fixed in advance, to \emph{dynamic} routing, where routings may depend arbitrarily on the current demand. Our main result is a construction that shows that the optimal cost of such a network based on oblivious routing (fractional or integral) may be a factor of \BigOmega(\log{n}) more than the cost required when using dynamic routing. This is true even in the important special case of the asymmetric hose model. This answers a question in \cite{chekurisurvey07}, and is tight up to constant factors. Our proof technique builds on a connection between expander graphs and robust design for single-sink traffic patterns \cite{ChekuriHardness07}
    corecore