15 research outputs found

    Physical mapping of wheat and rye expressed sequence tag-simple sequence repeats on wheat chromosomes

    Get PDF
    Six hundred and seventy two loci belonging to 275 expressed sequence tag-simple sequence repeats [EST-SSRs, including 93 wheat (Triticum aestivum L.) and 182 rye (Secale cereale L.) EST-SSRs] were physically mapped on 21 wheat chromosomes. The mapping involved two approaches, the wet-lab approach involving use of deletion stocks and the in silico approach involving matching with ESTs that were previously mapped. The number of loci per EST-SSR mapped using the in silico approach was almost double the number of loci mapped using the wet-lab approach (using deletion stocks). The distribution of loci on the three subgenomes, on the seven homoeologous groups and on the 21 individual chromosomes was nonrandom (P « 0.01). Long arms had disproportionately (relative to the difference in DNA content) higher number of loci, with more loci mapped to the distal regions of chromosome arms. A fairly high proportion of EST-SSRs had multiple loci, which were largely (81%) homoeoloci. Rye EST-SSRs showed a high level of transferability (≈77%) to the wheat genome. Putative functions were assigned to 216 SSR-containing ESTs through homology searches against the protein database. As many as 104 SSR-containing ESTs (a subset of the above ESTs) were also mapped to the 12 rice chromosomes, which corresponded with the known homology between wheat and rice chromosomes. These physical maps of EST-SSRs should prove useful for comparative genomics, gene tagging, fine mapping, and cloning of genes and QTLs. Dna-based molecular markers, particularly SSRs, have been developed and mapped on chromosomes in a variety of crop plants. In bread wheat, genetic and physical mapping of SSRs has been an ongoing exercise, and, to date, ≈2450 SSRs (1 SSR 1.63 cM-1) have been genetically mapped (for details see Torada et al., 2006) and ≈1320 SSRs (62 SSRs chromosome-1) have been physically mapped (for details see Goyal et al., 2005). With a genome size of ≈16 000 Mbp, it is evident that despite concerted efforts, the density of mapped SSRs in bread wheat remains relatively low and continued efforts are needed to increase the density of these SSRs on available genetic and physical maps. In recent years, emphasis has also shifted from genomic SSRs to EST-SSRs due to the availability of very large databases of ESTs from all of the cereals including bread wheat. Consequently, the number of EST-SSRs in cereals now includes 43 598 from bread wheat (Peng and Lapitan, 2005), 16 917 from rice and 184 from rye (La Rota et al., 2005; Hackauf and Wehling, 2002). The genetic mapping of these EST-SSRs is difficult due to a low level of polymorphism, as a result of their conserved nature. Physical mapping of these EST-SSRs in wheat is equally difficult due to the occurrence of homoeoloci exhibiting no polymorphism. This has discouraged wheat researchers from undertaking a large-scale project to genetically or physically map wheat EST-SSRs although genetic mapping of 325 EST-SSRs (Gao et al., 2004; Nicot et al., 2004; Yu et al., 2004) and physical mapping of 305 EST-SSRs was recently undertaken (Yu et al., 2004; Zhang et al., 2005; Peng and Lapitan, 2005). We previously reported genetic mapping of 58 and physical mapping of 270 genomic SSRs (Gupta et al., 2002; Goyal et al., 2005). The present study is an extension of our earlier studies on physical mapping of SSRs and involved both wet-lab and in silico approaches, leading to the successful mapping of as many as 672 loci. The in silico approach allowed mapping of twice the number of loci (per EST-SSR) mapped using wet-lab analysis

    Molecular and Transcriptional Regulation of Seed Development in Cereals: Present Status and Future Prospects

    Get PDF
    Cereals are a rich source of vitamins, minerals, carbohydrates, fats, oils and protein, making them the world’s most important source of nutrition. The influence of rising global population, as well as the emergence and spread of disease, has the major impact on cereal production. To meet the demand, there is a pressing need to increase cereal production. Optimal seed development is a key agronomical trait that contributes to crop yield. The seed development and maturation is a complex process that includes not only embryo and endosperm development, but also accompanied by huge physiological, biochemical, metabolic, molecular and transcriptional changes. This chapter discusses the growth of cereal seed and highlights the novel biological insights, with a focus on transgenic and new molecular breeding, as well as biotechnological intervention strategies that have improved crop yield in two major cereal crops, primarily wheat and rice, over the last 21 years (2000–2021)

    Book Review for Plant Biotechnology and Genetics. C. Neal Stewart Jr. (ed.)

    No full text

    Identification and functional analysis of secreted effectors from phytoparasitic nematodes

    No full text
    Background: Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Research: Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Conclusion: Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic nematodes

    Identification and functional analysis of secreted effectors from phytoparasitic nematodes

    No full text
    Background: Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Research: Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Conclusion: Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic nematodes

    Mapping main effect QTL and epistatic interactions for leaf rust and yellow rust using high density ITMI linkage map

    No full text
    The present study was undertaken to identify QTL for leaf rust (LR) and stripe or yellow rust (YR) using ITMI-mapping population under Indian environmental conditions. A high density framework linkage map consisting of 1,345 markers was used to conduct single and two locus QTL analyses using QTLCartographer and QTLNetwork. A total of 14 main-effect QTL (M-QTL) for LR and 12 M-QTL for YR were detected. Among all these M-QTL, 7 for LR and 4 for YR were novel, and have not been reported in earlier studies using same population. Eight significant QĂ—Q interactions for each trait were also identified, which involved 16 epistatic-QTL (E-QTL) for LR and 14 E-QTL (including 2 M-QTL) for YR. Four genomic regions had QTL for both LR and YR. The phenotypic variation explained (PVE) ranged from 2.16% - 29.07% for M-QTLLR and from 0.80%-7.05% for E-QTL. Epistasis contributed a significant portion of the PVE (26.01% for LR and 31.51% YR) for the two traits. Minor environment interactions were observed for YR

    An integrated physical map of simple sequence repeats in bread wheat

    No full text
    Physical mapping of DNA-based markers in wheat has been greatly facilitated due to the availability of deletion stocks, which constitute an ideal material for mapping these markers to specific chromosomal regions or bins to create physical landmarks. In the present study, the available physical maps for wheat SSRs were enriched by addition of 128 new SSR loci that belonged to wheat gSSRs and brachypodium gSSRs and EST-SSRs. This led to the development of an integrated physical map of 2,031 wheat SSR loci. A maximum of 765 loci (37.67%) were mapped on sub-genome B followed by the 651 loci (32.05%) on sub-genome D and 615 loci (30.28%) on sub-genome A, thus giving a mean resolution of 7.8 Mb between any two SSR loci. Relative to genomic SSRs (gSSRs), the EST-SSRs of brachypodium showed greater transferability in cv. Chinese Spring. Using 704 SSR loci which were mapped genetically as well as physically, a comparison was made between genetic and physical maps to determine the distribution of recombination frequencies (cM/Mb) in different regions of the wheat genome. Recombination frequencies within the individual bins ranged from 0.01 cM/Mb (low recombination) to 13.16 cM/Mb (high recombination), suggesting an uneven distribution along the chromosomes or chromosome arms. Hopefully, the integrated physical map presented in this communication may prove useful in the currently on-going whole genome sequencing of wheat genome through alignment of BAC contigs. A comparison of integrated physical map with genetic linkage map will also facilitate on-going and future genomics research

    Recent trends and perspectives of molecular markers against fungal diseases in wheat

    Get PDF
    Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40-60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases

    A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute

    No full text
    Jute is one of the most important fibre crops, which is second only to cotton in providing environment-friendly (biodegradable and renewable) ligno-cellulose fibre. In order to improve this largely neglected crop, we conducted a preliminary study involving the following: (i) analysis of nature and extent of the genetic variability for fibre yield and four other related traits in a set of 81 genotypes belonging to two commercially cultivated Corchorus species (45 genotypes of C. olitorius + 36 genotypes of C. capsularis), (ii) development and analysis of a set of simple sequence repeat (SSR) markers from C. olitorius, and (iii) use of a sub-set of SSRs for assessment of genetic diversity in the above set of 81 genotypes. The results suggested quantitative nature of fibre yield and other related traits, with a preponderance of dominance component in genetic variance. A sub-set of 45 SSRs derived from C. olitorius, when used for a study of DNA polymorphism and genetic diversity, showed high transferability of these C. olitorius SSRs to C. capsularis. The average number of alleles for individual SSRs was surprisingly low (3.04 for both species, 2.02 for C. capsularis and 2.51 for C. olitorius), and so was the average polymorphic information content (PIC; 0.23 and 0.24 in two species). In the dendrogram obtained using a similarity matrix, the 81 genotypes were grouped into three clusters, which largely corresponded to the two species, Cluster I belonging mainly to C. capsularis and the other two closely related clusters (clusters II and III) belonging to C. olitorius. It was also shown that a minimum of 15 SSRs could give the same information as 41 SSRs, thus making many SSRs redundant. The SSR markers developed during the present study and to be developed in future will prove useful not only for evaluation of genetic diversity, but also for molecular mapping/QTL analysis, and for comparative genome analysis of the two Corchorus species
    corecore