Original Research

Physical Mapping of
Wheat and Rye Expressed
Sequence Tag-Simple
Sequence Repeats on
Wheat Chromosomes
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Abstract

Six hundred and seventy two loci belonging to 275 expressed sequence fag—simple
sequence repeats [EST-SSRs, including 93 wheat (Triticum aestivum L.) and 182 rye
(Secale cereale L) EST-SSRs] were physically mapped on 21 wheat chromosomes.
The mapping involved two approaches, the wet-lab approach involving use of deletion
stocks and the in silico approach involving matching with ESTs that were previously
mapped. The number of loci per EST-SSR mapped using the in silico approach was
almost double the number of loci mapped using the wet-lab approach (using deletion
stocks). The distribution of loci on the three subgenomes, on the seven homoeologous
groups and on the 21 individual chromosomes was nonrandom (P << 0.01). Long
arms had disproportionately (relative to the difference in DNA content) higher number
of loci, with more loci mapped to the distal regions of chromosome arms. A fairly high
proportion of EST-SSRs had multiple loci, which were largely (81%) homogoloci.

Rye EST-SSRs showed a high level of transferability (=77%) to the wheat genome.
Putative functions were assigned to 216 SSR-containing ESTs through homology
searches against the protein database. As many as 104 SSR-containing ESTs (a subset
of the above ESTs) were also mapped to the 12 rice chromosomes, which corresponded
with the known homology between wheat and rice chromosomes. These physical
maps of EST-SSRs should prove useful for comparative genomics, gene tagging, fine
mapping, and cloning of genes and QTLs.

Abbreviations: DT, ditelosomic; EST, expressed sequence tag; NT, nullisomic—
tetrasomic; SSR, simple sequence repeat.
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DNA-BASED MOLECULAR MARKERS, particularly SSRs,
have been developed and mapped on chromosomes in
a variety of crop plants. In bread wheat, genetic and
physical mapping of SSRs has been an ongoing exercise,
and, to date, ~2450 SSRs (1 SSR 1.63 cM™) have been
genetically mapped (for details see Torada et al., 2006)
and =1320 SSRs (62 SSRs chromosome™) have been
physically mapped (for details see Goyal et al., 2005).
With a genome size of =16 000 Mbp, it is evident that
despite concerted efforts, the density of mapped SSRs
in bread wheat remains relatively low and continued
efforts are needed to increase the density of these SSRs
on available genetic and physical maps.

In recent years, emphasis has also shifted from
genomic SSRs to EST-SSRs due to the availability of
very large databases of ESTs from all of the cereals
including bread wheat. Consequently, the number of
EST-SSRs in cereals now includes 43 598 from bread
wheat (Peng and Lapitan, 2005), 16 917 from rice and
184 from rye (La Rota et al., 2005; Hackauf and Weh-
ling, 2002). The genetic mapping of these EST-SSRs is
difficult due to a low level of polymorphism, as a result
of their conserved nature. Physical mapping of these
EST-SSRs in wheat is equally difficult due to the occur-
rence of homoeoloci exhibiting no polymorphism. This
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has discouraged wheat researchers from undertak-
ing a large-scale project to genetically or physically
map wheat EST-SSRs although genetic mapping of
325 EST-SSRs (Gao et al., 2004; Nicot et al., 2004; Yu
et al.,, 2004) and physical mapping of 305 EST-SSRs
was recently undertaken (Yu et al., 2004; Zhang et
al., 2005; Peng and Lapitan, 2005). We previously
reported genetic mapping of 58 and physical mapping
of 270 genomic SSRs (Gupta et al., 2002; Goyal et al.,
2005). The present study is an extension of our earlier
studies on physical mapping of SSRs and involved

The in silico approach allowed
mapping of twice the number of
loci (per EST-SSR) mapped using
wet-lab analysis.

both wet-lab and in silico approaches, leading to the
successful mapping of as many as 672 loci.

Materials and Methods

Cytogenetic Stocks

For chromosome bin mapping of EST-SSRs, the
following cytogenetic stocks of common wheat ‘Chi-
nese Spring’ were used for sequential assignment as fol-
lows: (i) 42 compensating nullisomic—tetrasomic (NT)
lines were used for assigning EST-SSRs to individual
chromosomes (Sears, 1954, 1966); (ii) 24 ditelosomic
(DT) lines were used for assigning EST-SSRs to short
or long arms of individual chromosomes (Sears and
Sears, 1978), and (iii) 101 deletion lines (including 74
single deletion lines, 21 double deletion lines, and 6
triple deletion lines) were used for subarm mapping
(Endo and Gill, 1996; Qi et al., 2003). The seed material
for NT and DT lines was procured from Dr. B. S. Gill of
Kansas State University, Kansas, USA, and that of dele-
tion lines was procured from Dr. T. R. Endo of Kyoto
University, Japan. These deletion lines provide complete
coverage of the wheat genome, subdividing it into 159
chromosome bins. The details of the above cytogenetic
stocks used are listed in Supplemental Table 1.

DNA Isolation and PCR Amplification

The genomic DNA for all the cytogenetic stocks
was isolated from week-old seedlings following the
CTAB method described elsewhere (Prasad et al.,
2000). The PCR was performed using the genomic
DNA of each wheat cytogenetic stock in a final
volume of 20 UL in an Eppendorf mastercycler, as
described elsewhere (Gupta et al., 2003). After elec-

trophoresis, polyacrylamide gels were silver-stained
following Tegelstrom (1992).

In Silico Mining of Rye EST-SSRs

A total of 9196 rye ESTs (details available at
www.ncbi.nlm.nih.gov; verified 10 Oct. 2006) were
searched in silico for the presence of SSRs using a
Macro program that was kindly provided by Dr. N.
D. Young (University of Minnesota, St. Paul, Min-
nesota, USA). Nonredundant SSR-containing ESTs
were identified using the CAP3 sequence assembly
program (http://pbil.univ-lyon1.fr/cap3.php; verified
11 Oct. 2006), and were used for physical mapping.

Primers for Wet-Lab Mapping

Primers for 160 wheat EST-SSRs were synthe-
sized by Illumina (www.illumina.com; verified 10
Oct. 2006), using sequences available in the pub-
lished literature (Gupta et al., 2003; La Rota et al.,
2005). Aliquots for 157 rye EST-SSR primers were a
generous gift by B. Hackauf of The Institute of Crop
Plants, Gross Luesewitz, Germany (Hackauf and
Wehling, 2002).

EST Sequences for In Silico Mapping

A nonredundant set of 399 SSR-containing rye
EST sequences (mined from the rye EST database as
above; details given in Supplemental Table 2) were
used for in silico physical mapping on the wheat
genome. Additionally, sequences of SSR-containing
wheat ESTs, which could not be physically mapped
through a wet-lab approach, were also used for in
silico physical mapping, using mapped ESTs (http://
wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi;
verified 10 Oct. 2006).

Physical Mapping of EST-SSRs

An individual EST-SSR locus was assigned
to a chromosome, an arm, or a bin according to
whether or not the expected PCR amplified product
was obtained when genomic DNA from a particu-
lar cytogenetic stock was used as a template. If the
expected amplified product was generated in all
deletion lines but absent in NT and DT lines, the
fragment was assigned to a centromeric bin of the
corresponding arm; similarly, if the expected ampli-
fied product was absent in NT, DT, and also in all
corresponding deletion lines, it was assigned to the
terminal bin, and if the product was obtained in only
some of the deletion lines, it was logically assigned
to a specific interstitial bin (Fig. 1). Wherever ditelo-
somics for a chromosome were not available, dele-
tions for both arms were used for bin mapping. For
in silico physical mapping, sequences of SSR-con-
taining ESTs of wheat and rye were subjected to a
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BLASTN search against the GrainGenes database of
wheat EST sequences that were bin mapped earlier
using deletion stocks of Chinese Spring (http://
wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi;
verified 10 Oct. 2006). Optimized BLASTN search
parameters [cut-off E (expectation) value of < e™'°]
and bit score 100 were used. Only the top hit from
the BLASTN results were assigned to specific bins
of wheat chromosomes.

Alignment of SSR-containing ESTs
to the Rice Genome and Mapping
onto Rice Chromosomes

The SSR-containing ESTs that were mapped
during the present study were also used for BLASTN
homology search with the rice whole genome sequence
available at Gramene (www.gramene.org; verified 21
Nov. 2006). The significant matches were determined
using a cut-off E value of 10™°. Using this approach,
SSR-containing ESTs were placed onto the rice
chromosomes with the help of KaryoView software
available at Gramene (www.gramene.org/Oryza_
sativa/karyoview; verified 10 Oct. 2006).

Assignment of Putative Functions
to SSR-containing ESTs

The SSR-containing ESTs were subjected to
BLASTX analysis against the nonredundant protein
database for assigning putative functions at a cut-off
E value of 107> (www.ncbi.nlm.nih.gov/BLAST; veri-
fied 10 Oct. 2006).

Statistical Tests for Random
Distribution of Mapped Loci

On the basis of physical size (in micrometers) and
DNA contents of chromosomes and chromosome arms
(as given in Gill et al., 1991; Furuta and Nishikawa,
1991), the expected number of EST-SSR loci was esti-
mated under the assumption of random distribution
among chromosomes or chromosome arms, among
the three subgenomes, and seven homoeologous
groups. The expected number of EST-SSR loci on the
rice chromosomes was estimated on the basis of size
(Mb) of each rice chromosome (Www.Gramene.org/
Oryza_sativa; verified 10 Oct. 2006) assuming ran-
dom distribution of loci. The ) test for goodness-of-fit
was used for testing the random distribution of EST-
SSR loci among chromosomes, chromosomes arms,
the three subgenomes, the seven homoeologous groups
of wheat and among 12 rice chromosomes. Independence
of the distribution of loci in the three subgenomes vs.
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Figure 1. PCR profiles showing strategy followed for
deletion bin mapping: (a) Physical mapping of wEST-SSR
PK123 (TC67549) on centromeric bin of DL (notice ampli-
fication in all the deletion stocks), Lanes M 100-bp ladder,
1 CS, 2 N6DT6A, 3 N6DT6B, 4 Dt6DS, 5 DtéDL, 6 6DL-
6,7 6DL-1, 8 6DL-12, 9 6DL-11, 10 6DL-10. (b) Physical
mapping of rEST-SSR SCM141 (BE495388) on interstitial
bin defined by deletion breakpoints 5AL10 and 5AL-17
(notice amplification in only some deletion stocks); Lanes
M 100-bp ladder, 1 CS, 2 N5AT5B, 3 N5AT5D, 4 Dt5AL,
5 5AS-1, 6 5AS-3, 7 5AS-7, 8 5AS-10, 9 5AL-12, 10 5AL-
10, 11 5AL-17, 12 5AL:23. (c) Physical mapping of wEST-
SSR PK9 (BG274944) in distal bin of 2DS (notice absence
of amplification in all the deletion stocks); Lanes M 100-bp
ladder, 1 CS, 2 N2DT2A, 3 N2DT2B, 4 Dt2DS, 5 Dt2DL,
6 2DS-1, 7 2DS-5.

the seven homoeologous groups was tested using 3 x 7
contingency table for )¢ test of independence.

Results and Discussion

Physical Mapping of EST-SSRs

In the present study, 672 loci belonging to 275
EST-SSRs were mapped, with an average of 2.44 loci
per EST-SSR (Table 1; Fig. 2). As many as 716 EST-
SSRs (including 160 wEST-SSRs and 556 rEST-SSRs;
w stands for wheat and r stands for rye) were tried for
this purpose, giving a successful mapping effort of
38.40%. Of these 672 mapped loci, 110 loci belonging
to 74 EST-SSRs (43 wEST-SSRs + 31 rEST-SSR) were
mapped using a wet-lab approach (1.48 loci/EST-
SSR), and 562 loci belonging to 201 EST-SSRs (50
WEST-SSRs + 151 rEST-SSRs) were mapped using
an in silico approach (2.8 loci/EST-SSR). The results

Table 1. Details of the EST-SSR loci physically mapped
using wet-lab analysis and in silico analysis in wheat
(in each case, number of EST-SSRs used for mapping
are given in parenthesis).

Number of EST-SSRs loci mapped

Wet-lab analysis In silico analysis folal
Wheat 67 (43) 143 (50) 210 (93)
Rye 4331 419 (151) 462 (182)
Total 110 (74) 562 (201) 672 (275)

Mohan et al.: Mapping of EST-SSRs on Wheat Chromosomes S5
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Figure 2. Physical mapping of wheat and rye EST-SSRs on 21 wheat chromosomes. The accession numbers of ESTs,
which correspond mapped EST-SSRs are shown on the right and the fraction lengths are given on the left. Vertical
lines on the right side span the bin length. The accession numbers in blue belong to wheat EST-SSRs, and those in red
belong to rye EST-SSRs. The EST-SSRs, which could not be assigned to bins and were assigned to chromosome arms
only are underlined and those assigned to chromosomes (with no information about arm) are given under each indi-

vidual chromosome.

of the present study are in agreement with those of
earlier reports, where an average number of mapped
loci per EST-SSR in wheat ranged from 1.3 to 2.8 (Yu
etal., 2004; Zhang et al., 2005; Qi et al., 2004). As

can be seen, the in silico approach allowed mapping
of twice the number of loci (per EST-SSR) mapped
using the wet-lab analysis. Since the cytogenetic
stocks covered the whole genome, this difference
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Figure 2. Continued.
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Distribution of EST-SSR Loci among
Subgenomes and Homoeologous Groups

between numbers of mapped loci could not be due
to incomplete coverage of the genome by the cytoge-
netic stocks. Instead, this may be due to the failure to

map, through the wet-lab approach, the homoeoloci The distribution of loci in the three subge-

that lacked polymorphism since the expected prod-
uct will be visible in all NT, DT, and deletion stocks.
Instead, the in silico approach will allow mapping of
such homoeoloci, since the EST sequence will match
with more than one mapped sequence.

nomes (Table 2), when tested for randomness using
their lengths in micrometers (Gill et al., 1991),
were statistically significant (P << 0.01), suggest-
ing a nonrandom distribution. Similar results were
obtained when DNA contents (instead of length in

Mohan et al.: Mapping of EST-SSRs on Wheat Chromosomes
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o
3 micrometers) of the three subgenomes were used 74 loci on homoeologous Group 4 to 128 loci on
o . .
= for these tests. In Table 2 it can be seen that the A homoeologous Group 1. These results are in agree-
& genome, which is larger than the D genome, had the ment with earlier reports, where the maximum
minimum number of mapped loci. This is similar number of SSR loci were mapped to the homoeolo-
to earlier studies that reported many more EST loci gous Group 1 (Gao et al., 2004), and the homoeolo-
mapped to the B subgenome than either on the A or gous Group 4 was found to carry the minimum
on the D subgenome (Qi et al., 2004; Akhunov et al., number of mapped loci, which was attributed to
2003; Peng and Lapitan, 2005). the lack of polymorphism in this group (Nelson et
The distribution of EST-SSR loci among the al., 1995; Cadalen et al., 1997; Paillard et al., 2003;

seven homoeologous groups of wheat chromosomes Zhang et al., 2005).
was also nonrandom (P << 0.01), ranging from
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Figure 2. Continued.

However, the distribution of EST-SSR loci
among the three subgenomes and among the seven
homoeologous groups was independent (P = 0.62),
although one would expect a lack of independence,
since each subgenome has seven chromosomes, one
from each of the seven homoeologous groups. This
unexpected independent distribution may be due to
the fact that many EST-SSRs with homoeoloci could
not be mapped through the wet-lab approach.

Distribution of EST-SSR Loci on Individual
Chromosomes and Their Arms

The distribution of EST-SSR loci among the 21
wheat chromosomes was also nonrandom (P <<<
0.01) with a minimum number of 20 EST-SSR loci
on Chromosome 4B and a maximum number of 46
EST-SSR loci mapped on Chromosome 1B. These
results are also in agreement with earlier reports,
where Chromosome 4B was found to carry the mini-
mum number of SSR markers with the lowest gene
density (Qi et al., 2004; Song et al., 2005), and 1B
(along with 2A) was found to carry the maximum
number of EST-SSR loci (Torada et al., 2006). The
distribution of loci on long and short arms (exclud-
ing 18 loci, which could not be assigned to arms)
was also not in proportion to their relative lengths
or DNA contents (P <<< 0.01). Long arms carried
almost double the number of loci (434 loci) car-
ried by the short arms (220 loci), although the long
arms are known to contain only 38% excess DNA
(computed from data from Furuta and Nishikawa,
1991), suggesting that long arms contain many more

expressed genes than the short arms, as also inferred
in earlier studies (Sorrells et al., 2003; Qi et al., 2004).

Distribution of EST-SSR Loci to Distal and
Proximal Regions of Chromosome Arms
Chromosome bin mapping was possible for
only 568 loci, since the remaining 104 loci could
be assigned only to chromosomes or chromosome
arms. On the basis of the fraction length of the
terminal deletion lines (Endo and Gill, 1996), each
chromosome arm was divided into two parts, the
proximal region representing the 60% of the arm
from the centromere (C-0.60) and the distal region
representing the terminal 40% of the arm (0.60-
1.00). Out of the above 568 EST-SSR loci, 240 (42%)
loci were mapped to the bins which fall in the distal
regions, 134 (24%) loci were mapped to bins which
fall in the proximal regions, and the remaining
194 (34%) loci were mapped to the long bins which
contained parts of both distal and proximal regions.
The distribution of loci in distal and proximal bins

Table 2. Distribution of EST-SSR loci according to
their assignment to wheat chromosomes arranged
in two-way classification.

Homoeologous Group
1 2 3 4 5 6 7 Total
SubgenomeA 37 32 32 23 24 31 25 204
SubgenomeB 46 38 32 20 26 35 39 23
SubgenomeD 45 42 31 31 25 26 32 232
Total 126 112 95 74 75 92 96 672

Mohan et al.: Mapping of EST-SSRs on Wheat Chromosomes S9
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deviated significantly from the distribution expected
on the basis of the relative lengths of these bins (P <<
0.01). The present study, therefore, suggests that more
EST-SSR loci tend to map to the distal regions, which
are also the regions of recombination hot spots. The
preferential localization of the EST-SSRs in the recom-
bination hot spots enhances their value as markers,
since these would facilitate fine mapping of genes and
QTLs. In earlier studies, EST-density was shown to be
positively related with the recombination rate (Akhu-
nov et al., 2003) and was found to increase with increas-
ing relative physical distance from the centromere to
the end of a chromosome (Qi et al., 2004).

EST-SSRs Detecting Multiple Loci
(Homoeologous and Nonhomoeologous)

Of the 275 mapped EST-SSRs, 178 (64%)
detected multiple loci, and each of the remaining 97
detected only a single locus. Of the 178 EST-SSRs
with multiple loci, 144 (81%) detected multiple
homoeoloci, the remaining 34 (19%) detected mul-
tiple loci on nonhomoeologous chromosomes, which
might represent duplications. This is in agreement
with an estimated 25 to 30% gene duplications
reported for the wheat genome (Anderson et al.,
1992). In view of the known fact that ESTs gener-
ally represent unique single loci (Qi et al., 2004), the
occurrence of EST-SSRs with multiple loci is signifi-
cant and may be attributed to the conserved nature
of EST-SSRs, which seem to occur as homoeoloci in
the three related subgenomes.

Transferability of Rye EST-SSRs to Wheat
Out of 157 SSR-containing rye ESTs that were
used to study transferability between the two spe-
cies, 121 (77%) gave amplification products in Chi-
nese Spring, indicating a high rate of transferability.
The level of transferability between wheat and rye
in the present study is comparable to earlier reports
of transferability of EST-SSRs in cereals (Gao et al.,
2003; Khlestkina et al., 2004; Zhang et al., 2005), but
it is higher than the level of transferability (25%) of
genomic SSRs (Korzun et al.,, 2001; Kuleung et al.,
2004). This may also be attributed to the conserved
nature of EST-SSRs among closely related species.

Distribution and Localization of Mapped
EST-SSRs on Rice Chromosomes

In the present study, a total of 104 (38%) mapped
EST-SSRs (from wheat and rye) showed significant
sequence homology with rice genome sequence (Fig. 3).
These results differ from those of La Rota and Sorrells,
(2004), who reported 59% of the wheat EST contigs

showing significant homology with rice sequences; the
differences may be attributed to the different stringency
conditions used in the two studies.

It can be seen in Fig. 3 that the rice genome
sequences that are homologous to the 104 EST-SSRs
were only nearly random in their distribution on the
12 rice chromosomes (P = 0.038; not significant at P
= 0.01). The distribution ranged from a maximum of
14 EST-SSRs homologous to sequences on rice Chro-
mosome 3 (longest Chromosome 1 had homology
with only 12 EST-SSRs) to a minimum of 4 EST-
SSRs homologous to sequences on rice Chromosome
8 (smallest Chromosome 10 had homology with 5
EST-SSRs). Also, 66 (63.4%) of the 104 EST-SSRs
belonged to the long arms, 32 (30.8%) belonged to
the short arms, and the remaining 6 (5.8%) belonged
to both arms of wheat chromosomes (Supplemental
Table 3). Once again, the wheat EST-SSRs from the
long arms sharing homology to the rice genome
sequences were more than double the number from
the short arms, giving support to the idea that the
frequency of expressed genes on the long arms of
wheat chromosomes is much higher than what one
would expect due to only 38% excess DNA in the
long arms (Sorrells et al., 2003).

The present study also confirms some of the
known relationships between wheat and rice chro-
mosomes. For instance, EST-SSRs that matched
sequences on rice Chromosomes 1, 2, 3, 5, and 6
were generally mapped on related wheat homo-
eologous Groups 3, 6, 4, 1, and 7, respectively, and
EST-SSRs matching with sequences of rice Chromo-
somes 4 and 7, were mapped to wheat Group 2 chro-
mosomes. The earlier studies also reported that rice
Chromosomes 4 and 7 both together contributed to
a conserved block of the present day wheat Group 2
(Sorrells et al., 2003; La Rota and Sorrells, 2004).

Putative Functions of Mapped EST-SSRs

The results of the BLASTX analysis revealed that
186 (67.6%) EST-SSRs matched proteins of known
functions; 25 (9%) matched proteins of unknown
functions, and 5 (1.8%) matched with hypotheti-
cal/expressed proteins (Supplemental Table 4). The
remaining 59 (21.45%) EST-SSRs did not match with
any proteins in the database.

Among the 186 EST-SSRs matching proteins of
known functions, seven EST-SSRs that were mapped
to the short arms of Group 1 chromosomes matched
with genes belonging to the gliadin family (a class
of seed storage proteins), which are known to occur
on the corresponding positions of Group 1 chromo-
somes (Payne et al., 1984; Payne, 1987; Sandhu et
al., 2001; Erayman et al., 2004). The EST-SSR, PK74
(mapped to terminal short arms of wheat Group

S-10 The Plant Genome [A Supplement to Crop Science] m January 2007 = No. 1
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Figure 3. Rice chromosomes showing physical positions of SSR-containing ESTs, mapped through homology search.

1) matched glutenin, confirming the known map-
ping positions of the corresponding genes (Sandhu
etal., 2001; Erayman et al., 2004). This is also in
agreement with the report that the genes coding for
both gliadins and glutenins occur in the gene-rich
region (GRR) 1S 0.8; 48 such GRRs were reported in
the wheat genome (Erayman et al., 2004). However,
EST-SSR PK82 that was physically mapped to 6AS
matched with a Dof DNA binding protein (a mul-
tigene family encoding transcription factors), the
genes for which were earlier mapped to 1BS (Gao et
al., 2004) and 5A/5B (Ravel et al., 2006), so that the
present study suggests an additional locus on 6AS
for this gene family. Another EST-SSR mapping to
Chromosome 4A matched an ice recrystallization
inhibition protein, encoded by gene TaRI-1 with
unknown position on the wheat genome (Tremblay
et al., 2005). Thus the mapping of the SSR-contain-
ing EST (SCM178) belonging to a gene coding for
ice recrystallization inhibition protein on wheat
Chromosome 4A is reported for the first time in the
present study.

EST-SSRs for Cereal Breeding

EST-derived SSR markers are a novel source of
markers from the transcribed regions of the genome
and increase the repertoire of perfect markers for
studies related to germplasm evaluation, fine map-
ping of genes or QTLs, marker-assisted selection in

plant breeding, and for positional cloning of genes or
QTLs (Gupta and Rustgi, 2004). The transferability
and physical mapping of rEST-SSRs to wheat will
also help in further elucidating the relationships
between the wheat and rye genomes and make them
a valuable source for comparative genomics research.
Because of their higher level of transferability, EST-
SSRs may also be used for gene introgression from
related wild species, which are an important source
of both biotic and abiotic resistance genes.
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