541 research outputs found
Cell bystander effect induced by radiofrequency electromagnetic fields and magnetic nanoparticles
Induced effects by direct exposure to ionizing radiation (IR) are a central
issue in many fields like radiation protection, clinic diagnosis and
oncological therapies. Direct irradiation at certain doses induce cell death,
but similar effects can also occur in cells no directly exposed to IR, a
mechanism known as bystander effect. Non-IR (radiofrequency waves) can induce
the death of cells loaded with MNPs in a focused oncological therapy known as
magnetic hyperthermia. Indirect mechanisms are also able to induce the death of
unloaded MNPs cells. Using in vitro cell models, we found that colocalization
of the MNPs at the lysosomes and the non-increase of the temperature induces
bystander effect under non-IR. Our results provide a landscape in which
bystander effects are a more general mechanism, up to now only observed and
clinically used in the field of radiotherapy.Comment: 16 pages, 4 figures, submitted to International Journal of Radiation
Biolog
Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses
We report on hyperthermia measurements on a colloidal solution of 15 nm
monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic
field display a sharp increase followed by a plateau, which is what is expected
for losses of ferromagnetic single-domain NPs. The frequency dependence of the
coercive field is deduced from hyperthermia measurement and is in quantitative
agreement with a simple model of non-interacting NPs. The measured losses (1.5
mJ/g) compare to the highest of the literature, though the saturation
magnetization of the NPs is well below the bulk one.Comment: 14 pages, 3 figure
Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells
In this work, the capability of primary, monocyte-derived dendritic cells
(DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a
strategy to induce selective cell death in these MNP-loaded DCs using external
alternating magnetic fields (AMFs) is reported. No significant decrease in the
cell viability of MNP-loaded DCs, compared to the control samples, was observed
after five days of culture. The amount of MNPs incorporated into the cytoplasm
was measured by magnetometry, which confirmed that 1 to 5 pg of the particles
were uploaded per cell. The intracellular distribution of these MNPs, assessed
by transmission electron microscopy, was found to be primarily inside the
endosomic structures. These cells were then subjected to an AMF for 30 min, and
the viability of the blank DCs (i.e., without MNPs), which were used as control
samples, remained essentially unaffected. However, a remarkable decrease of
viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was
observed after the same 30 min exposure to an AMF. The same results were
obtained using MNPs having either positive (NH2+) or negative (COOH-) surface
functional groups. In spite of the massive cell death induced by application of
AMF to MNP-loaded DCs, the amount of incorporated magnetic particles did not
raise the temperature of the cell culture. Clear morphological changes at the
cell structure after magnetic field application were observed using scanning
electron microscopy. Therefore, local damage produced by the MNPs could be the
main mechanism for the selective cell death of MNP-loaded DCs under an AMF.
Based on the ability of these cells to evade the reticuloendothelial system,
these complexes combined with an AMF should be considered as a potentially
powerful tool for tumour therapy.Comment: In Press. 33 pages, 11 figure
Application of magnetically induced hyperthermia on the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections
Magnetic hyperthermia is currently an EU-approved clinical therapy against
tumor cells that uses magnetic nanoparticles under a time varying magnetic
field (TVMF). The same basic principle seems promising against trypanosomatids
causing Chagas disease and sleeping sickness, since therapeutic drugs available
display severe side effects and drug-resistant strains. However, no
applications of this strategy against protozoan-induced diseases have been
reported so far. In the present study, Crithidia fasciculata, a widely used
model for therapeutic strategies against pathogenic trypanosomatids, was
targeted with Fe_{3}O_{4} magnetic nanoparticles (MNPs) in order to remotely
provoke cell death using TVMFs. The MNPs with average sizes of d approx. 30 nm
were synthesized using a precipitation of FeSO_{4}4 in basic medium. The MNPs
were added to Crithidia fasciculata choanomastigotes in exponential phase and
incubated overnight. The amount of uploaded MNPs per cell was determined by
magnetic measurements. Cell viability using the MTT colorimetric assay and flow
cytometry showed that the MNPs were incorporated by the cells with no
noticeable cell-toxicity effects. When a TVMF (f = 249 kHz, H = 13 kA/m) was
applied to MNP-bearing cells, massive cell death was induced via a
non-apoptotic mechanism. No effects were observed by applying a TVMF on control
(without loaded MNPs) cells. No macroscopic rise in temperature was observed in
the extracellular medium during the experiments. Scanning Electron Microscopy
showed morphological changes after TVMF experiments. These data indicate (as a
proof of principle) that intracellular hyperthermia is a suitable technology to
induce the specific death of protozoan parasites bearing MNPs. These findings
expand the possibilities for new therapeutic strategies that combat parasitic
infections.Comment: 9 pages, four supplementary video file
Large magnetic anisotropy in Ferrihydrite nanoparticles synthesized from reverse micelles
Six-line ferrihydrite(FH) nanoparticles have been synthesized in the core of
reverse micelles, used as nanoreactors to obtain average particle sizes
2 to 4 nm. The blocking temperatures extracted from
magnetization data increased from to 20 K for increasing particle
size. Low-temperature \MOS measurements allowed to observe the onset of
differentiated contributions from particle core and surface as the particle
size increases. The magnetic properties measured in the liquid state of the
original emulsion showed that the \FH phase is not present in the liquid
precursor, but precipitates in the micelle cores after the free water is
freeze-dried. Systematic susceptibility \chi_{ac}(\emph{f},T) measurements
showed the dependence of the effective magnetic anisotropy energies
with particle volume, and yielded an effective anisotropy value of kJ/m.Comment: 8 pages, 10 figures. Nanotechnology, v17 (Nov. 2006) In pres
Targeted Assembly of Short Sequence Reads
As next-generation sequence (NGS) production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants, by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled strin-gently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming ge-nomic mutations, polymorphism, fusion and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly
- …