62 research outputs found

    Elasto-plastic damage modelling of beams and columns with mechanical degradation

    Full text link
    © 2017 Techno-Press, Ltd. Within the context of continuum mechanics, inelastic behaviours of constitutive responses are usually modelled by using phenomenological approaches. Elasto-plastic damage modelling is extensively used for concrete material in the case of progressive strength and stiffness deterioration. In this paper, a review of the main features of elasto-plastic damage modelling is presented for uniaxial stress-strain relationship. It has been reported in literature that the influence of Alkali-Silica Reaction (ASR) can lead to severe degradations in the modulus of elasticity and compression strength of the concrete material. In order to incorporate the effects of ASR related degradation, in this paper the constitutive model of concrete is based on the coupled damage-plasticity approach where degradation in concrete properties can be captured by adjusting the yield and damage criteria as well as the hardening moduli related parameters within the model. These parameters are adjusted according to results of concrete behaviour from the literature. The effect of ASR on the dynamic behaviour of a beam and a column are illustrated under moving load and cyclic load cases

    Close-range photogrammetry for accurate deformation distribution measurement

    Full text link
    © 2017 Taylor & Francis Group, London. This paper introduces a methodology for improving the accuracy of Deformation Distribution Measurement (DDM) using close-range photogrammetry. After reviewing various algorithms for 2D Digital Image Correlation (DIC), Zero-Normalized Cross-Correlation (ZNCC) is selected for deformation measurement. The impact of several other factors on DIC measurement accuracy has been investigated, including the type of imaging sensors, the contrast and pattern of a specimen, and searching window size. Optimal option of these factors is proposed. The technique is utilized in the experiment of applying static loading on a replica of a concrete structural component used for Sydney Harbour Bridge. Test results presented in the paper include DIC measurements and validation data from conventional sensors

    Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

    Full text link
    Copyright © 2019 Techno-Press, Ltd. Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation

    Experimental and numerical analysis of 3D printed cement mortar specimens using inkjet 3DP

    Full text link
    Investigations involving the experimental and numerical analysis of inkjet (powder-based) 3DP are relatively limited for cement mortar materials. This study, by using cement mortar specimens, aimed to determine the optimum strength of 3D printed structural members in all three planes by identifying the compressive strength of cubes, the modulus of elasticity and Poisson’s ratio. In addition, this study aimed to analyse and verify the numerical model for 3D printed cementitious mortar (CP) prisms and beams using an inkjet 3D printer by considering the mechanical behaviour of the printed prisms under compression. Robust and optimal mechanical properties of the 3D printed cementitious mortar obtained from laboratory testing were utilised in the simulation of structural components using ABAQUS software. As inputs for simulation, the strength properties of the printed objects in all three cartesian planes were obtained from test results. The obtained results showed that the printed cementitious materials have orthotropic properties and that the results of experiments were consistent with the analytical solutions and hypothesised model for the different geometric shapes. This finding is extremely valuable in determining the optimum features of 3D printed structures

    Reinforcement of concrete elements with modified polymers

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D80064 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Mechanisms of heavy metal immobilisation using geopolymerisation techniques – A review

    Full text link
    Copyright © 2018 Japan Concrete Institute. Every year, substantial amount of waste materials containing toxic substances is produced throughout the world, which causes serious damage to the environment and poses threat to human health. Among available techniques of immobilisation of toxic elements in harmful by-products, geopolymerisation is considered as an effective approach to deal with many environmental issues. Geopolymer binders have long been recognised to have great potential in immobilisation of hazardous wastes due to its advantages over Portland cement based binders. A profound knowledge of how hazardous elements are immobilised by geopolymer binders is necessary for achieving effective waste management strategies. This paper provides some important aspects of geopolymer materials regarding the immobilisation mechanisms and factors influencing the immobilisation efficiency, which are necessary to carry out further research on addressing the hazardous waste immobilisation
    • …
    corecore