7 research outputs found

    Passenger Car Unit Estimation at Signalized Intersection for Non-lane Based Mixed Traffic Using Microscopic Simulation Model

    Get PDF
    In India, traffic on roads is mixed in nature with widely varying static and dynamic characteristics of vehicles. At intersections, vehicles do not follow ordered queue and lane discipline. Different vehicle types occupy different spaces on the road, move at different speeds, and start at different accelerations. The problem of measuring volume of such mixed traffic has been addressed by converting different vehicles categories into equivalent passenger cars and expressing the volume in terms of Passenger Car Unit (PCU) per hour. The accurate estimation of PCU values for different roadway and traffic conditions is essential for better operation and management of roadway facilities. Hence, the objective of the present study is to estimate the PCU values at signalized intersection in mixed traffic and to study the influence of traffic volume, traffic composition and road width on PCU values.For this purpose, a mixed traffic simulation model developed specifically for a signalized intersection was used. The model was calibrated and validated with the traffic data collected from a signalized intersection in Chennai city. Simulation runs were carried out for various combinations of vehicular composition, volume levels and road width. It was observed that presence of heavy vehicles and increase in road width affects the PCU values. The obtained PCU values were statistically checked for accuracy and proven to be satisfied. The PCU values obtained in this study can be used as a guideline for the traffic engineers and practitioners in the design and analysis of signalized intersections where mixed traffic conditions exist

    Evaluation of left turn channelization at a signalized intersection under heterogeneous traffic conditions

    Get PDF
    The behaviour of traffic in the heterogeneous environment of an urban signalized intersection is complex and difficult to model. This paper presents the development of a simulation model to imitate the flow of heterogeneous traffic through a signalized intersection. It discusses the validation of the proposed model in terms of queue density and dissipation of vehicles at an intersection approach and found to be satisfactorily replicating the field conditions. In this study, the model was extended to examine the effects of left turn channelization on vehicle waiting times. Sensitivity analysis was carried out to study the variation of vehicle waiting times. Analysis estimated that vehicle waiting times were reduced if a channelization was provided for a high traffic volume and certain proportions of left turn vehicles in the intersection approach. The length of channelisation has marginal impacts on vehicle waiting times. First published online: 27 Oct 201

    Overtaking behaviour of vehicles on undivided roads in non-lane based mixed traffic conditions

    No full text
    Traffic on Indian roads is highly mixed in nature with wide variations in the static and dynamic characteristics of vehicles. These vehicles do not follow strict lane discipline and occupy any available lateral position on the road space. Overtaking is one of the most complex and important manoeuvre on undivided roads where the vehicles use the opposing lane to overtake the slower vehicles with the presence of oncoming vehicles from opposite direction. They are unavoidable especially in the case of mixed traffic conditions where there is always a speed difference between the fast and slow moving vehicles. Overtaking process involves lane-changing manoeuvres, acceleration and deceleration actions and estimation of relative speed of overtaking and overtaken vehicles, and also, estimation of speed and distance of the oncoming vehicle. The main objective of the present study is to study the overtaking characteristics of vehicles on undivided roads under mixed traffic conditions. For this purpose, details of overtaking data were collected on a two-lane two-way undivided road using moving car observer method and registration plate method. The overtaking characteristics of all types of vehicles under mixed traffic conditions were observed and mathematically modelled. The data extracted and analysed were the acceleration characteristics, speeds of the overtaking vehicles, overtaking time, overtaking distances, safe opposing gap required for overtaking, flow rates, overtaking frequencies, types of overtaking strategy, and types of overtaking and overtaken vehicles. Two types of overtaking strategies were observed in the field such as flying overtaking and accelerative overtaking. Graphs were plotted between the relative speed of the overtaking and overtaken vehicles against the overtaking time and negative correlation was found between the speed differential and total overtaking time for all categories of vehicles. It was observed that the number of overtaking increases with increase in the flow rate in the on-going direction and decreases with increase in flow in the opposite direction. The results obtained from this study will be useful to understand the overtaking behaviour of vehicles in mixed and non-lane discipline traffic conditions. These parameters will be useful in the development of traffic simulations models for undivided roads and thereby for estimation of capacity. The findings from the study can also be used to estimate potential collision times which will be helpful to improve the road safety

    Effect of curbside bus stops on passenger car units and capacity in disordered traffic using simulation model

    No full text
    Representation of traffic in terms of Passenger Car Unit (PCU) is imperative to estimate capacity in disordered traffic. Many studies have been conducted on investigation of impacts of traffic and geometric conditions on traffic characteristics and PCUs. However, the sensitivity of PCUs due to roadside frictions are not adequately studied. To address this gap, this study aims to estimate PCU values for vehicles under the influence of curbside bus stop, which is the most common roadside friction in developing countries. Lack of space for providing exclusive bus bays and higher demand for public transport buses in urban roads justify the need for this study. Methodology of this study involves development and validation of a microscopic simulation model to quantify the impact of curbside bus stop on PCU as well as capacity. The results indicate the significant differences in PCU values due to the presence of curbside bus stop with varying traffic volume and composition
    corecore