2 research outputs found

    Novel <i>GREM1 </i>Variations in Sub-Saharan African Patients With Cleft Lip and/or Cleft Palate

    Get PDF
    Objective: Cleft lip and/or cleft palate (CL/P) are congenital anomalies of the face and have multifactorial etiology, with both environmental and genetic risk factors playing crucial roles. Though at least 40 loci have attained genomewide significant association with nonsyndromic CL/P, these loci largely reside in noncoding regions of the human genome, and subsequent resequencing studies of neighboring candidate genes have revealed only a limited number of etiologic coding variants. The present study was conducted to identify etiologic coding variants in GREM1, a locus that has been shown to be largely associated with cleft of both lip and soft palate. Patients and Method: We resequenced DNA from 397 sub-Saharan Africans with CL/P and 192 controls using Sanger sequencing. Following analyses of the sequence data, we observed 2 novel coding variants in GREM1. These variants were not found in the 192 African controls and have never been previously reported in any public genetic variant database that includes more than 5000 combined African and African American controls or from the CL/P literature. Results: The novel variants include p.Pro164Ser in an individual with soft palate cleft only and p.Gly61Asp in an individual with bilateral cleft lip and palate. The proband with the p.Gly61Asp GREM1 variant is a van der Woude (VWS) case who also has an etiologic variant in IRF6 gene. Conclusion: Our study demonstrated that there is low number of etiologic coding variants in GREM1, confirming earlier suggestions that variants in regulatory elements may largely account for the association between this locus and CL/P. </jats:sec

    Clinically actionable secondary findings in 130 triads from sub-Saharan African families with non-syndromic orofacial clefts

    Get PDF
    Abstract Introduction The frequency and implications of secondary findings (SFs) from genomic testing data have been extensively researched. However, little is known about the frequency or reporting of SFs in Africans, who are underrepresented in largeā€scale population genomic studies. The availability of data from the first wholeā€genome sequencing for orofacial clefts in an African population motivated this investigation. Methods In total, 130 caseā€parent trios were analyzed for SFs within the ACMG SFv.3.0 list genes. Additionally, we filtered for four more genes (HBB, HSD32B, G6PD and ACADM). Results We identified 246 unique variants in 55 genes; five variants in four genes were classified as pathogenic or likely pathogenic (P/LP). The P/LP variants were seen in 2.3% (9/390) of the subjects, a frequency higher than ~1% reported for diverse ethnicities. On the ACMG list, pathogenic variants were observed in PRKAG (p. Glu183Lys). Variants in the PALB2 (p. Glu159Ter), RYR1 (p. Arg2163Leu) and LDLR (p. Asn564Ser) genes were predicted to be LP. Conclusion This study provides information on the frequency and pathogenicity of SFs in an African cohort. Early risk detection will help reduce disease burden and contribute to efforts to increase knowledge of the distribution and impact of actionable genomic variants in diverse populations
    corecore