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Abstract (250 words): 12 

Background: Nonsyndromic cleft palate only (nsCPO) is a common and multifactorial form of 13 

orofacial clefting. In contrast to successes achieved for the other common form of orofacial clefting, 14 

i.e., nonsyndromic cleft lip with/without cleft palate (nsCL/P), genome wide association studies 15 

(GWAS) of nsCPO have identified only one genome wide significant locus. Aim of the present study 16 

was to investigate whether common variants contribute to nsCPO and, if so, to identify novel  risk 17 

loci. 18 

Methods: We genotyped 33 SNPs at 27 candidate loci from 2 previously published nsCPO GWAS in an 19 

independent multi-ethnic sample. It included: (i) a family-based sample of European ancestry 20 

(n=212); and (ii) two case/control samples of Central European (n=94/339) and Arabian ancestry 21 

(n=38/231), respectively. A separate association analysis was performed for each genotyped dataset, 22 

and meta-analyses were performed. 23 

Results: After association analysis and meta-analyses, none of the 33 SNPs showed genome-wide 24 

significance. Two variants showed nominally significant association in the imputed GWAS dataset and 25 

exhibited a further decrease in P-value in a European and an overall meta-analysis including imputed 26 

GWAS data, respectively (rs395572: PMetaEU=3.16x10-4; rs6809420: PMetaAll=2.80x10-4). 27 

Conclusion: Our findings suggest that there is a limited contribution of common variants to nsCPO. 28 

However, the individual effect sizes might be too small for detection of further associations in the 29 

present sample sizes. Rare variants may play a more substantial role in nsCPO than in nsCL/P, for 30 

which GWAS of smaller sample sizes have identified genome-wide significant loci. Whole-31 

exome/genome sequencing studies of nsCPO are now warranted. 32 

 33 
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Keywords: congenital malformation, nonsyndromic cleft palate only, common variants, imputed 1 

genome-wide association study, candidate loci, association study 2 

 3 

Introduction: 4 

Orofacial clefting is one of the most common forms of congenital malformation, and displays 5 

substantial phenotypic variation. The two most common forms of orofacial clefting are cleft lip 6 

with/without cleft palate (CL/P) and cleft palate only (CPO) (Mangold et al., 2011). These two types 7 

are distinct in terms of both epidemiological findings and developmental origin, and can occur in a 8 

syndromic or nonsyndromic form. In the latter, no additional physical or cognitive disabilities are 9 

present (Mangold et al., 2011). In Europe, the estimated prevalence of true nonsyndromic clefts is 1 10 

in 1,000 for nonsyndromic CL/P (nsCL/P) and 1 in 2,400 for nonsyndromic CPO (nsCPO), suggesting 11 

that nsCL/P is the more common form of nonsyndromic clefting in this population (Mangold et al., 12 

2011). Research suggests that nsCL/P and nsCPO are multifactorial disorders, with both genetic and 13 

environmental factors contributing to their development. Heritability estimates of approximately 14 

90% have been reported for both phenotypes (Grosen et al., 2012). 15 

To date, research has identified a total of 39 genome-wide significant risk loci for nsCL/P across 16 

different populations. Of these, 37 loci were identified via genome-wide association studies (GWAS), 17 

meta-analyses of GWAS data, or follow-up studies (Rahimov et al., 2008; Birnbaum et al., 2009; 18 

Moreno et al., 2009; Beaty et al., 2010; Mangold et al., 2010; Ludwig et al., 2012; Beaty et al., 2013; 19 

Sun et al., 2015; Leslie et al., 2016b; Ludwig et al., 2016; Yu et al., 2017; Leslie et al., 2017; Ludwig et 20 

al., 2017). 21 

In contrast, only two independent GWAS (Beaty et al., 2011; Leslie et al., 2016a), and one meta-22 

analysis of both studies (Leslie et al., 2017), have been published for nsCPO. One of these studies 23 

(Leslie et al., 2016a) identified the first - and as yet only - genome-wide significant risk locus for 24 

nsCPO at chromosome 1p36, a finding that was then independently detected in a sequencing study 25 

(Mangold et al., 2016). Notably, this missense variant in the grainyhead-like 3 gene (GRHL3) showed 26 

no association with nsCL/P (Mangold et al., 2016).  27 

The issue of whether nsCPO and nsCL/P share a common genetic etiology is a matter of ongoing 28 

debate. However, available epidemiological- and molecular data suggest that the shared genetic 29 

etiology of these two frequent forms of clefting is limited. Ludwig et al. (2017) demonstrated that 30 

with the exception of the FOXE1 locus (9q22), none of the nsCL/P risk loci known at the time of the 31 

analysis exhibited a significant association in an imputed nsCPO GWAS dataset (Ludwig et al., 2017). 32 

The finding for FOXE1 was unsurprising, since previous research has established that this locus is 33 

associated with both traits (Moreno et al., 2009; Ludwig et al., 2014; Leslie et al., 2017). A polygenic 34 

score approach in the Ludwig et al. (2017) study also showed that nsCL/P loci in sum do not 35 
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contribute to nsCPO etiology (Ludwig et al., 2017). These findings are consistent with the results of a 1 

current study of Moreno-Uribe et al. (2017). 2 

Aim of the present study was to investigate whether common variants contribute to nsCPO and, if so, 3 

to identify novel risk loci. To that end we investigated genetic association of candidate loci derived 4 

from the already mentioned imputed nsCPO GWAS dataset (Ludwig et al., 2017). Additionally, we 5 

included candidate single nucleotide polymorphisms (SNPs) described in another recent imputed 6 

nsCPO GWAS (Leslie et al., 2016a). Association analyses were performed in a European trio sample, 7 

and two independent case/control samples from Central Europe and Yemen, respectively. 8 

Additionally, we investigated a possible overlap in signals between nsCL/P in nsCPO by checking 15 9 

novel nsCL/P risk loci (Yu et al., 2017; Leslie et al., 2017) for association in the imputed nsCPO dataset 10 

(Ludwig et al., 2017). With this investigation we completed the analysis performed by Ludwig et al. 11 

(2017) for the 24 risk loci known at that time.  12 

 13 

Methods: 14 

Imputed GWAS Dataset (Ludwig et al., 2017) 15 

The imputed nsCPO GWAS data that were followed up in the present study were based on a GWAS 16 

that comprised approximately 498,000 genotypes of each member of 550 nuclear nsCPO trios (Beaty 17 

et al., 2011). Ludwig et al. (2017) obtained dbGaP data of this nsCPO GWAS and performed genome-18 

wide imputation for 446 trios of European (n=212) and Asian (n=234) ancestry using IMPUTE2 on the 19 

basis of 1000 genomes haplotypes (phase 3) (The 1000 Genomes Project Consortium 2015). 20 

Statistical analyses were performed for around 8.38 million variants with an info-score of >0.4 and a 21 

minor allele frequency (MAF) of > 1% using the FBAT dosage approach (Cobat et al., 2014). In 22 

addition to the main imputed dataset of genotypes from 446 trios (EU+AsiaBeaty), a sub-dataset was 23 

generated comprising the genotypes of 212 European trios only (EUBeaty). 24 

 25 

Sample 26 

The genotyped sample comprised two independent case/control samples and one trio sample 27 

recruited in the context of different studies. Further information on gender distribution and origin is 28 

given in Table S1.  29 

The first case/control sample comprised 94 nsCPO index patients and 339 population-matched 30 

controls (EUMangold). The cases were drawn from a large sample of nonsyndromic cleft families of 31 

Central European ancestry (recruitment method described in Mangold et al., 2010). The population-32 

matched controls were volunteer blood donors also of Central European ancestry (Mangold et al., 33 

2010).  34 
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The second case/control sample (ArabAldhorae) was recruited within the context of surgical outreach 1 

programs, as described elsewhere (Aldhorae et al., 2014). The ArabAldhorae sample comprised 38 2 

nsCPO cases and 231 blood donors of Arab ethnicity from Yemen. 3 

The family-based sample comprised 212 nuclear trios with an nsCPO index patient (EUMossey). These 4 

families were recruited from different areas of Europe (Great Britain, Italy, The Netherlands, 5 

Slovenia, Slovakia, Hungary, Estonia, and Bulgaria) in the context of the EUROCRAN/ITALCLEFT study 6 

(Mossey et al., 2017). Nonsyndromic status of affecteds was confirmed clinically at the point of 7 

recruitment to the various studies.  8 

The present study was approved by the ethics committees of the participating institutions, and 9 

informed consent was obtained from all participants, or if not adult by parents or legal guardians, 10 

prior to inclusion. 11 

 12 

Genotyping 13 

DNA from the EUMangold sample (patients and controls) had been isolated using standard salting out 14 

procedures (Mangold et al., 2010). Isolation of DNA from ArabAldhorae blood samples (patients and 15 

controls) had been performed using the Chemagic Magnetic Seperation Module I (Perkin Elmer 16 

chemagen Technologies GmbH, Baesweiler, Germany), in accordance with the manufacturer´s 17 

instructions (Aldhorae et al., 2014). Genomic DNA from the EUMossey sample had been extracted from 18 

peripheral venous blood samples using the QIAamp Blood DNA Mini kit (QIAGEN, Germantown, MD, 19 

US) (Mossey et al., 2017).  20 

DNA was quantified using NanoDrop (PeqLab Thermo Scientific, Wilmington, DE, US). Genotyping of 21 

selected SNPs was performed with the multiplex MassARRAY system (Agena Bioscience, Hamburg, 22 

Germany), as based on end-point PCR coupled with MALDI-ToF. Two plexes were designed using the 23 

Assay Design Suite v2.0, and data analysis was performed using the Typer Analysis software (both: 24 

Agena, Hamburg, Germany). Primers were synthesized by Metabion (Planegg, Germany). Primer 25 

sequences are available upon request. One SNP was genotyped in both plexes as an internal control.  26 

 27 

Selection of SNPs for Genotyping 28 

SNPs with P-values of < 1x10-5 in at least one of the GWAS datasets (EU+AsiaBeaty, EUBeaty) were 29 

selected from the imputed GWAS data (Table S2). Of these, SNPs with an info-score < 0.8 were 30 

excluded from further analysis. 31 

For loci in which more than 1 SNP fulfilled the selection criteria we selected suitable backup SNPs. 32 

SNPs that failed assay design were replaced by the second best hit, in terms of p-value and info-33 

score, at the respective locus. If only one SNP fulfilling the criteria was available at a given locus and 34 

failed assay design, a backup SNP in high linkage disequilibrium (LD) (r2 > 0.99) was selected from the 35 
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imputed dataset. In this special case also variants with a P-value slightly above the set threshold of 1 

1x10-5 were considered. The selection procedure resulted in 25 SNPs at 19 loci (Table S2; Table S3).  2 

Initially, 13 candidate SNPs (P-value <1x10-5) derived from Leslie et al. (2016a) were to be forwarded 3 

for genotyping in the present three independent samples, without considering their association in 4 

the imputed datasets (EUBeaty and EU+AsiaBeaty). However, only eight SNPs at eight loci could be 5 

included into the genotyping assay (Table S4). Thus, a total of 33 SNPs at 27 loci were selected for 6 

genotyping (Table S5). 7 

 8 

Statistical Analysis 9 

For the case/control samples, the standard chi-square test was used to test for deviation from Hardy-10 

Weinberg Equilibrium (HWE). The threshold for significant deviation from HWE was set at P < 1x10-4 11 

in controls and P < 1x10-6 in cases. 12 

Using the two-sided Armitage trend test, each SNP was tested for a difference in genotype 13 

distribution between cases and controls. In the EUMossey trios, single-marker association analysis was 14 

performed using the transmission disequilibrium test (TDT), as implemented in the FAMHAP 15 

software package (Becker and Knapp, 2004). 16 

Data evaluation comprised: (i) a separate analysis of each genotyped sample (EUMangold, ArabAldhorae, 17 

EUMossey); (ii) a z-score based meta-analysis  and a fixed-effects meta-analysis of all genotyped 18 

samples (Willer et al., 2010) (Metageno); (iii) a z-score based meta-analysis (Willer et al., 2010) of all 19 

European samples (EUMangold, EUMossey, EUBeaty; named MetaEU); and (iv) z-score based meta-analysis 20 

(Willer et al., 2010) of all samples (EUMangold, ArabAldhorae, EUMossey, EU+AsiaBeaty; termed MetaAll). 21 

Relative risks were calculated for each of the genotyped samples and their meta-analysis based on 22 

the fixed effects approach (Table S6). EUBeaty and EU+AsiaBeaty (Ludwig et al., 2017) were imputed 23 

using the FBAT dosage approach (Cobat et al., 2014). This method does not allow for calculation of 24 

relative risks, thus this data is not available for MetaEU and MetaAll. 25 

A workflow of the present study is shown in Figure 1.  26 

P-values of < 0.05 were considered nominally significant. 27 

P-values given as Pcorrected were Bonferroni corrected for multiple testing. In the EUMangold and EUMossey 28 

data the number of 33 genotyped SNPs was considered for Bonferroni correction (Table S5). In the 29 

ArabAldhorae dataset the number of 32 SNPs was considered (Table S5). For the analysis of 15 nsCL/P 30 

loci top SNPs from Yu et al. (2017) and Leslie et al. (2017) in the imputed nsCPO dataset we 31 

considered the number of 15 markers for Bonferroni correction (Table S7). P-values of < 0.05 were 32 

considered significant after correction for multiple testing. 33 

LD values were determined using the web-based SNAP tool (Broad Institute). 34 

 35 
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Quality Control (QC) in the Genotyping Step 1 

For the internal control SNP used in both plexes, genotypes were compared and checked for 2 

agreement. Duplicates were identified by comparing individuals with shared genotypes, and 3 

removed from the genotyping dataset. In addition, samples with >2 missing genotypes 4 

(corresponding to an average call rate of 94%) and/or >2 Mendelian inconsistencies in the trio 5 

sample, were excluded.  6 

 7 

Analysis of nsCL/P loci top SNPs and associated regions of Yu et al. (2017) and Leslie et al. (2017) in 8 

EUBeaty and EU+AsiaBeaty 9 

To complete the analysis of potential signal-overlap for nsCL/P and nsCPO performed in Ludwig et al. 10 

(2017), the imputed nsCPO dataset was inspected on both a locus-wide and lead SNP level for the 11 

novel loci identified in 2017 by Yu et al. (n= 14) and Leslie et al. (n= 1). 12 

 13 

Results: 14 

Imputation resulted in 8,384,634 and 8,384,636 markers (info-score ≥ 0.4; MAF > 1%) in EUBeaty and 15 

EU+AsiaBeaty, respectively (Ludwig et al., 2017). No genome-wide significant association for nsCPO 16 

was reported (Ludwig et al., 2017). However, 83 SNPs at 26 loci showed P-values of < 10-5 in at least 17 

one analysis. The following had info-scores of <0.8 and were thus excluded: (i) 6 SNPs at 6 loci with 18 

only one associated SNP; and (ii) one SNP at a locus with multiple SNPs. This resulted in 76 SNPs at 20 19 

loci. Of these 20 loci, one locus could not be included in the genotyping step due to technical issues. 20 

For the remaining 19 loci, the selection procedure resulted in 25 SNPs for genotyping (Table S2). The 21 

risk alleles of SNPs selected from the imputed data were identical in both datasets (EUBeaty and 22 

EU+AsiaBeaty). None of the eight SNPs at eight loci selected from Leslie et al. (2016a) showed 23 

nominally significant association in either of the imputed datasets: The lowest P-values were 24 

obtained for rs3740617 in EUBeaty (P = 0.417) and rs595533 in EU+AsiaBeaty (P = 0.087) (Table S4). 25 

Genotyping was successful for all 33 markers (representing 27 different loci). In the course of QC, 26 

several samples were excluded due to missing genotype calls for more than two SNPs. These 27 

comprised the samples of: 7 individuals from EUMangold (2 patients and 5 controls); 2 individuals from 28 

ArabAldhorae (1 patient, 1 control); and 34 individuals from 27 EUMossey trios. Furthermore, the analyses 29 

identified six EUMossey trios with more than two Mendelian inconsistencies, and two duplicates (1 30 

control from ArabAldhorae and 1 EUMossey trio). These samples were excluded from further analysis. One 31 

SNP (rs76706433) was monomorphic in the Yemeni population (ArabAldhorae). This variant was 32 

therefore excluded from the analyses of ArabAldhorae, resulting in a set of 32 SNPs for this particular 33 

sample. None of the analyzed SNPs showed a deviation from HWE at the selected thresholds.  34 

 35 
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Genotyped sample and Metageno 1 

Separate analysis of each genotyped sample (EUMangold, ArabAldhorae, EUMossey) (Figure 1) revealed four 2 

SNPs (rs6747560, rs6809420, rs6805813, rs395572) with nominally significant P-values (P < 0.05). 3 

These comprised one SNP in the EUMangold sample and three SNPs in the ArabAldhorae sample (Table 1). 4 

At three of these loci, the risk allele was not identical to the risk allele of the imputed GWAS dataset. 5 

In the ArabAldhorae sample, rs6809420 was the only SNP to show both nominally significant association 6 

and a consistent effect direction (P = 0.024). This result did not withstand correction for multiple 7 

testing of the 32 SNPs (Pcorrected = 0.752). The fixed effects-based analysis revealed a relative risk (RR) 8 

of 2.41(95% confidence interval (CI), 1.12-5.20) for this SNP (Table S6).  9 

The z-score-based meta-analysis of all three genotyped samples (Metageno) revealed two nominally 10 

significant SNPs (rs6747560, rs1283107). Both SNPs showed the opposite effect direction to that 11 

observed in the initial datasets (EUBeaty and EU+AsiaBeaty) (Table 1, Table S8). Notably, in Metageno 12 

rs6809420 showed a tendency towards a nominally significant association (PMetageno = 0.066) and the 13 

fixed-effects-based meta-analysis revealed an RR of 1.24 (95% CI, 0.97-1.60) (Table S6). 14 

 15 

MetaEU 16 

In the meta-analysis of all samples with European ancestry (EUMangold, EUMossey, EUBeaty) (Figure 1), a 17 

decrease in the association P-value in comparison to EUBeaty alone was observed for the SNPs 18 

rs395572, rs7732608, and rs3740617 (Table 2). Of these, only rs395572 at 3q29 showed a nominally 19 

significant association (PEUBeaty = 0.0017; PMetaEU = 3.16x10-4) (Figure 2). None of the SNPs from Leslie 20 

et al. (2016a) showed decreased association P-values in the meta-analysis of all European samples. 21 

 22 

MetaAll 23 

In the z-score-based meta-analysis of all trios from the imputed EU+AsiaBeaty dataset and all 24 

genotyped samples (EUMangold, ArabAldhorae, EUMossey) (Figure 1), lower P-values compared to 25 

EU+AsiaBeaty alone were observed for the SNPs rs6809420, rs7732608, rs9347594, rs3740617, and 26 

rs595533 (Table 3). Of these, only two SNPs showed nominally significant association. Rs6809420 27 

was nominally significant in the initial imputed GWAS data (EU+AsiaBeaty), and the association signal 28 

got stronger after combination with the genotyped samples (PEU+AsiaBeaty = 0.0011, PMetaAll = 2.80x10-4) 29 

(Figure 3). Here, ArabAldhorae (Table 3) made the main contribution in terms of lowest P-value from the 30 

genotyped samples as already reported in section ‘Genotyped Sample and Metageno’.  31 

The association P-value for rs595533 from Leslie et al. (2016a) became nominally significant following 32 

data combination (PEU+AsiaBeaty = 0.087, PMetaAll = 0.0412) (Table 3).  33 
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In comparison to MetaEU, the association P-value of rs395577 showed no further decrease in MetaAll. 1 

This is probably due to an inconsistent effect direction for this SNP in the Yemen sample (Table S9, 2 

Table S10). 3 

 4 

Analysis of nsCL/P loci top SNPs and associated regions of Yu et al. (2017) and Leslie et al. (2017) in 5 

EUBeaty and EU+AsiaBeaty 6 

Analysis of these 15 novel loci revealed no genome wide significant association at either the whole 7 

locus or lead SNP level approach. In the locus-wide approach, the lowest P values were obtained for 8 

rs73288895 and rs8009664 from Yu et al. (2017) in EUBeaty and EU+AsiaBeaty, respectively (PEUBeaty = 9 

2.87x10-4 and PEU+AsiaBeaty = 3.88x10-5) (Table S11; Table S12). Both variants are located at 14q22.1. 10 

According to a SNAP proxy search (Johnson et al., 2008), neither variant is in LD with the lead SNP 11 

rs7148069 at the 14q22.1 locus (Yu et al., 2017) in European or Asian reference populations. In the 12 

lead SNP approach, rs705704 at 12q13.2 showed a nominally significant P-value in EU+AsiaBeaty 13 

(PEU+AsiaBeaty = 0.010) (Table S7). However, this did not withstand Bonferroni correction for multiple 14 

testing of the 15 tested lead SNPs (Pcorrected = 0.155). 15 

 16 

Discussion:  17 

To date, research has identified only one genome-wide significant nsCPO risk variant, namely 18 

rs41268753 at the GRHL3 locus (1p36) (Leslie et al., 2016a; Mangold et al., 2016). The aim of the 19 

present study was to further elucidate the genetic background of nsCPO, in particular whether 20 

common variants do contribute to the phenotype.  21 

We tried to detect such common nsCPO risk loci by combining imputed nsCPO GWAS data (Ludwig et 22 

al., 2017) with genotyping data from independent samples in two different ways:  23 

 24 

In the first approach data of all individuals under study were combined, regardless of ethnicity. This 25 

strategy aimed at compensating for small sample sizes and is expected to identify variants that 26 

contribute to nsCPO risk in diverse populations, albeit with low effect sizes. This led to the 27 

identification of a lead variant at 3q13 (rs6809420) with a frequency of 81.9% in the general 28 

population (Non-Finnish Europeans; gnomAD) (Exome Aggregation Consortium, 2016), which is 29 

located in an intergenic region. The genes TUSC1 and IGSF11 are located 1 Mb upstream and 1.2 Mb 30 

downstream of rs6809420, respectively, which suggests that this variant may have a regulatory 31 

function (Figure 3). Further support for the association with rs6809420 is provided by the variants 32 

rs9829549 (PEU+AsiaBeaty = 0.0013; r2 = 1) and rs4602427 (PEU+AsiaBeaty = 7.50 x 10-4, r2 = 0.94) which lie in 33 

perfect/high LD with the lead variant (red dots, Figure 3).  34 
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Evidence for a potential regulatory function of genetic regions can be provided by publicly available 1 

databases like the Roadmap Epigenomics Consortium (2015). These data show that rs6809420 is 2 

located in an enhancer mark (H3K4me1) of CD56+ ectoderm cultured cells derived from human 3 

embryonic stem cells, although it should be noted that these cells are derived from ectoderm, and 4 

are not identical to the palate-forming neural crest cells. Nevertheless, due to the early 5 

embryological time-point of facial development, access to appropriate human tissue samples for the 6 

epigenetic or functional follow-up of non-coding regions is problematic (Thieme and Ludwig, 2017).  7 

Furthermore, ENCODE transcription factor binding experiments have predicted that rs6809420 leads 8 

to the alteration of a p300 binding site (Kheradpour and Kellis, 2014). Together with other 9 

translational coactivators, p300 has been shown to exhibit distinct expression patterns during murine 10 

craniofacial development (Bhattacherjee et al., 2009). An altered p300 binding site may thus lead to 11 

the dysregulation of genes essential to this critical developmental process. Through an interaction 12 

with the effects of other variants and/or environmental factors, this may lead to the development of 13 

a cleft palate. Altogether, rs6809420 at 3q13 is an interesting finding. Another variant identified by 14 

this multi-ethnic approach was rs595533 at 18q22.1. This variant was reported by Leslie et al. 15 

(2016a). Only a limited decrease in the P-value was observed following data combination. We do not 16 

consider rs595533 an interesting suggestive finding of the present study.  17 

 18 

The second approach was done in view of the predominantly European nature of the samples under 19 

study. In this ‘European only’ approach a meta-analysis of all European samples (MetaEU) was 20 

performed. This ethnicity-specific meta-analysis identified a second suggestive variant (rs395572) 21 

with a frequency of 67.4% in the general population (Non-Finnish Europeans; gnomAD) (Exome 22 

Aggregation Consortium, 2016). Rs395572is located upstream of the microRNA gene MIR4797 and of 23 

the gene DLG1 (Figure 2). Recent studies in humans and animal models showed that microRNAs play 24 

a role in embryonic development including craniofacial development and might contribute to the risk 25 

of orofacial clefting when disrupted in their function (Wang et al., 2013; Ding et al., 2016; Li et al., 26 

2016). Rs395572 may alter expression of MIR4797. Alternatively, rs395572 might be in LD with a true 27 

causal variant located within the microRNA gene, altering binding properties of miR-4797. DLG1 28 

encodes the human discs large protein 1, which belongs to the family of molecular scaffolding 29 

proteins, and is implicated in biological processes such as the regulation of epithelial cell polarity and 30 

cell migration (Roberts et al., 2012; Marziali et al., 2015). Moreover, a study in mice demonstrated 31 

that murine Dlg1 is required for craniofacial development, and leads to craniofacial abnormalities 32 

including cleft palate when disrupted (Caruana and Bernstein 2001). The haplotype spans nearly the 33 

whole DLG1 gene providing additional evidence for DLG1 as candidate gene (Figure 2). Of note, 34 

strong support for our finding comes from a recent GWAS replication study for the other frequent 35 
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cleft phenotype, nsCL/P (Mostowska et al., 2017), which identified a genome-wide significant signal 1 

at the DLG1 locus. In their study the strongest associated SNP (P = 1.77x10-8) at the locus is rs338222, 2 

which is in LD with our candidate SNP rs395572 (r2 > 0.8). Our candidate SNP rs395572 reached a P-3 

value of 4.54x10-7 in their study  However, the risk alleles at rs338222 and rs395572 reported by 4 

Mostowska et al. (2017) differ from the risk alleles in the present nsCPO data, indicating that one 5 

allele confers risk for nsCL/P while the other allele confers risk for nsCPO. A similar finding has been 6 

recently reported in a population-based study of orofacial clefting (Moreno Uribe et al., 2017). 7 

Moreno Uribe et al. (2017) found that the variant rs227731 at the NOG1 locus showed an association 8 

with the opposite risk allele for nsCL/P compared to nsCPO. The functional significance of this 9 

observation is unclear. One plausible hypothesis is that the binding of transcription factors to these 10 

regions is allele- and context-specific. 11 

 12 

Our results support the concept of differences in the genetic background of nsCPO and nsCL/P.  First, 13 

the 15 novel risk loci for nsCL/P (Yu et al., 2017; Leslie et al., 2017) showed no genome-wide 14 

association in the present nsCPO GWAS data. Second, our present study identified only suggestive 15 

loci, and nsCPO GWASs have identified only one genome-wide significant finding, namely rs41268753 16 

at the GRHL3 locus (Beaty et al., 2011; Leslie et al., 2016a). In contrast, GWASs of nsCL/P even when 17 

investigating smaller sample sizes identified five genome-wide significant risk loci (Birnbaum et al., 18 

2009; Beaty et al., 2010; Mangold et al., 2010), and many loci approaching genome-wide significance 19 

which were confirmed in further studies (Ludwig et al., 2012; Beaty et al., 2013; Sun et al., 2015; 20 

Leslie et al., 2016b). Sufficient evidence is therefore now available to consider nsCL/P a complex trait. 21 

In contrast, the precise etiological nature of nsCPO remains unclear.  22 

 23 

The development of nsCPO may involve fewer genetic factors and more exogenic factors than is the 24 

case for nsCL/P. Nonetheless, heritability estimates of approximately 90% and a 50-60 fold increase 25 

in the recurrence risk for siblings of nsCPO patients compared to the population - data which strongly 26 

resemble estimates for nsCL/P - indicate that genetic factors make a strong contribution to the 27 

nsCPO phenotype. 28 

 29 

One could raise the hypothesis that the genetic variants involved in nsCPO and nsCL/P differ in terms 30 

of their frequency spectrum, and that nsCPO risk variants have lower frequencies. Taking this into 31 

consideration common nsCPO risk variants may have been missed with the previous GWASs and also 32 

with our approach simply due to sample size, i.e. power issues. Of note, the proven risk variant  33 

rs41268753 at the GRHL3 locus has a frequency of 3.2% in the general population (Non-Finnish 34 

Page 12 of 26

John Wiley & Sons, Inc.

Birth Defects Research Part A: Clinical and Molecular Teratology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Ishorst et al., Candidate loci association study in nsCPO 

 

12 

 

Europeans; gnomAD) (Exome Aggregation Consortium, 2016), and thus is among the low-frequency 1 

variants in the European population.  2 

 3 

Another hypothesis is that in general, rare variants might play a primary role in nsCPO etiology. 4 

These rare variants may be located in genes associated with syndromic forms of orofacial clefting, as 5 

shown previously by the present authors for GRHL3 and the Van-der-Woude syndrome (Mangold et 6 

al., 2016). Van der Woude syndrome is characterized by orofacial clefting and lip pits. In the 7 

mentioned sequencing study by our group members of the MangoldEU nsCPO sample were found to 8 

have Van der Woude syndrome without lip pits. Furthermore, an exome sequencing study of nsCPO 9 

identified putative causal variants in GRHL3 and CREBBP (Hoebel et al., 2017). CREBBP is associated 10 

with Rubinstein-Taybi syndrome, which is characterized among others by CPO (Hennekam et al., 11 

1993), and which might represent a further hypomorphic syndrome with reduced penetrance of 12 

additional anomalies. The present and other nsCPO samples may include similar cases. To generate 13 

more evidence for this hypothesis, further whole-exome or whole-genome sequencing would be a 14 

useful tool to detect rare variants in nsCPO patients. 15 

 16 

All of our findings require follow-up in order to assess their true contribution to nsCPO risk. This 17 

might involve meta-analyses of the present data and other available nsCPO GWAS datasets, or the 18 

use of larger samples in order to maximize statistical power. However, recruitment is hampered by 19 

the low prevalence of nsCPO (around 1 in 2,400). An alternative strategy would be to maximize 20 

statistical power by increasing marker density and data quality. As the newest generation of 21 

haplotype reference panels for imputation – such as the Haplotype Reference Consortium (HRC) 22 

(McCarthy et al., 2016) – combine sequencing data from multiple samples, genotype imputation is 23 

becoming more accurate for the entire MAF spectrum. In the present study, imputation was 24 

performed using the 1000 genomes haplotypes (phase 3). Thus imputation accuracy (and marker 25 

density) in general could be increased by imputing the dataset using HRC as a reference panel. 26 

Furthermore, variants with MAF < 1% could be considered. Nevertheless, the sample size of the 27 

imputed GWAS sample (EU+AsiaBeaty) was limited, and may have been insufficient in terms of the 28 

discovery of associations with low frequency variants.  29 

 30 

There are several limitations to the study.  31 

First, in our study we may have overlooked true associated variants in the imputed datasets (EUBeaty 32 

and EU+AsiaBeaty) (Ludwig et al., 2017) due to the stringent selection criteria applied (only SNPs with P 33 

< 1x10-5 were considered for genotyping). An example for this is again rs41268753 at the GRHL3 34 

locus, the only proven nsCPO risk variant known to date (Leslie et al., 2016a; Mangold et al., 2016).  35 
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We checked the P-value of this variant in both imputed datasets. Of note, the  P-value of rs4126875 1 

is higher than 1x10-5 (PEUBeaty = 1.18x10-4; PEU+AsiaBeaty = 1.42x10-4) (data not shown). This is above our 2 

set P-value threshold in the SNP selection procedure and demonstrates that our approach can miss a 3 

true finding. 4 

 5 

Second, although CPO often occurs as part of a syndrome, it may be misdiagnosed as nonsyndromic 6 

when reduced penetrance of additional symptoms occurs. Therefore, the present GWAS and 7 

genotyped samples may have included syndromic cases with a monogenetic background. If so, this 8 

would have led to a loss of statistical power. However, Moreno Uribe et al. compared locus effects in 9 

nonsyndromic (isolated) and syndromic cases, and showed that for most loci, the associations were 10 

similar in terms of direction and magnitude (Moreno Uribe et al., 2017). Notably, the Moreno Uribe 11 

analysis was performed predominantly in nsCL/P, since only one nsCPO risk locus was analyzed. 12 

 13 

Third, the study is based on imputed GWAS data of trios. Therefore not all of the meta-analyses 14 

provided effect sizes, which hampers the interpretation of results.  15 

 16 

A fourth limitation are the sizes and ethnicities of the samples used in this study. Sample sizes might 17 

be too small to detect true associations. Asian trios were part of the dataset that led to candidate 18 

SNPs, but none of the genotyped samples was of Asian ethnicity. Variants with a population-specific 19 

effect restricted to Asians may have been missed by our approach. 20 

 21 

In conclusion, our findings suggest that there is a limited contribution of common variants to nsCPO. 22 

Rare variants may play a more substantial role in nsCPO etiology than in nsCL/P. Whole-23 

exome/genome sequencing studies are necessary to identify such rare causative variants. 24 

However, our study identified two interesting suggestive nsCPO risk variants. The first finding 25 

rs395572 is located at a recently identified risk locus for nsCL/P at 3q29 and lies in high LD with the 26 

genome-wide significant top SNP at the locus (Mostowska et al., 2017). Although it has to be noted 27 

that the SNP shows the opposite risk allele in our study. The other finding rs6809420 at 3q13 is 28 

located in a potential p300 binding site, a coactivator that is known to be involved in craniofacial 29 

development. Follow-up studies with increased sample sizes could further elucidate whether these 30 

variants are truly associated with nsCPO. 31 
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Figure 2: Regional association plot of rs395572 locus +/- 500kb. PEUBeaty = P-value from imputed GWAS 1 

of European trios. PMetaEU = P-value from imputed GWAS of European trios and all genotyped samples 2 

with European ancestry. 3 

Figure 3: Regional association plot of rs6809420 locus +/- 500kb. PEU+AsiaBeaty = P-value from imputed 4 

GWAS of all trios. PMetaAll = P-value from imputed GWAS of all trios and all genotyped samples. Genes 5 

TUSC1 and IGSF11 are located 1 Mb upstream and 1.2 Mb downstream of rs6809420, respectively. 6 

Rs7633157 belongs to another locus indicated by LD (represented by dashed line) and failed 7 

genotyping. 8 

Table 1: Association results for SNPs with nominally significant associations in at least one of three 9 

genotyped samples and/or their meta-analysis (Metageno). 10 

Table 2: Results of European meta-analysis (SNPs with a decreased P-value in meta-analysis as 11 

compared to intitial imputed GWAS dataset (EUBeaty) are shown. 12 

Table 3: Results of meta-analysis of all genotyped samples and EU+AsiaBeaty (SNPs with a decreased P-13 

value after meta-analysis in comparison to the initial imputed GWAS dataset (EU+AsiaBeaty) are shown 14 

here.) 15 

Supplementary Figure S1: Regional association plot of rs595533 locus +/- 500kb. PEU+AsiaBeaty = P-value 16 

from imputed GWAS of all trios. PMetaAll = P-value from imputed GWAS of all trios and all genotyped 17 

samples. 18 

Supplementary Table S1: Gender distribution and origin of the three genotyped samples 19 

Supplementary Table S2: 83 SNPs with P<1x10-5 in imputed datasets EUBeaty and EU+AsiaBeaty 20 

Supplementary Table S3: Genotyped SNPs from imputed GWAS (EUBeaty, EU+AsiaBeaty) 21 

Supplementary Table S4: SNPs from Leslie et al. (2016a) 22 

Supplementary Table S5: SNPs finally selected for genotyping 23 

Supplementary Table S6: Relative risks of genotyped samples and meta-analysis of all genotyped 24 

samples (Metageno) derived from a fixed-effects based meta-analysis. 25 

Supplementary Table S7: Association P-values of EUBeaty and EU+AsiaBeaty at the 14 novel nsCL/P loci 26 

from Yu et al. (2017) and one novel locus from Leslie et al. (2017) at lead SNP level 27 

Supplementary Table S8: Association results for two European (EUMangold and EUMossey) and one 28 

Arabian (ArabAldhorae) nsCPO sample and the corresponding meta-analysis 29 
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Supplementary Table S9: Association results for the European nsCPO samples (EUMangold and EUMossey), 1 

imputation of the European nsCPO trios (EUBeaty) and the corresponding meta-analysis (MetaEU) 2 

Supplementary Table S10: Association results for the European and the Arabian nsCPO samples 3 

(EUMangold, EUMossey and ArabAldhorae), imputation of the nsCPO trios (EU+AsiaBeaty) and the 4 

corresponding meta-analysis (MetaAll). 5 

Supplementary Table S11: Association P-values of EUBeaty at 14 novel nsCL/P loci from Yu et al. (2017) 6 

and one novel locus from Leslie et al. (2017). For each locus all SNPs with P-value < 1x10-3 (info-score 7 

> 0.8) or if none present the SNPs with the two lowest P-values (info-score > 0.8) are shown.  8 

Supplementary Table S12: Association P-values of EU+AsiaBeaty at 14 novel nsCL/P loci from Yu et al. 9 

(2017) and one novel locus from Leslie et al. (2017). For each locus all SNPs with P-value < 1x10-3 10 

(info-score > 0.8) or if none present the SNPs with the two lowest P-values (info-score > 0.8) are 11 

shown. 12 
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Figure 1: Workflow of the present study.  
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Figure 3: Regional association plot of rs6809420 locus +/- 500kb. PEU+AsiaBeaty = P-value from imputed GWAS 
of all trios. PMetaAll = P-value from imputed GWAS of all trios and all genotyped samples. Genes TUSC1 and 
IGSF11 are located 1 Mb upstream and 1.2 Mb downstream of rs6809420, respectively. Rs7633157 belongs 

to another locus indicated by LD (represented by dashed line) and failed genotyping.  
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Table 1 Association results for SNPs with nominally significant associations in at least one of 

three genotyped samples and/or their meta-analysis (Metageno) 

 

SNP information 

 

Association P-values
c
 

 

SNP Chr Pos (hg19) 

Risk/other 

allele
a
   

EUMangold 

PTrend 

ArabAldhorae 

PTrend 

EUMossey 

PTDT   Metageno 

rs6747560 2 32784766 G/T
b
 

 

0.007
d
 0.414 0.320 

 

0.046
d
 

rs1283107 3 106961320 G/C
b
 

 

0.383 0.281 0.142 

 

0.049
d
 

rs6809420 3 117454822 T/G 

 

0.320 0.024 0.647 

 

0.066 

rs6805813 3 187595294 G/A
b
 

 

0.733 0.019
d
 0.535 

 

0.456 

rs395572 3 197037952 A/G 

 

0.309 0.042
e
 0.058 

 

0.278 

          SNP = single nucleotide polymorphism; Chr = Chromosome; Pos (hg19) = postion in human reference 

genome version 19 

 

Nominally significant P-values are given in bold; P-values given in italics indicate an opposite effect 

direction as in the meta-analysis (Metageno) 

 

a
 risk allele according to Metageno 

b
 different risk allele as compared to imputed nsCPO datasets (EUBeaty and EU+AsiaBeaty) 

c
 Association P-values for EUMangold and ArabAldhorae cohorts were calculated using the Armitage trend 

test (Ptrend); Association P-values for EUMossey were calculated using the transmission disequilibrium test 

(PTDT) 
d
 SNP shows nominally significant association but in the opposite effect direction to that observed in 

the initial GWAS data 
e
 SNP shows nominally significant association but in an opposite effect direction as the initial GWAS 

data and Metageno 
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Table 3 Results of meta-analysis of all genotyped samples and EU+AsiaBeaty (SNPs with a decreased P-value after meta-analysis in 

comparison to the initial imputed GWAS dataset (EU+AsiaBeaty) are shown here. 

SNP information 

 

Association P-values
c
 

 

  

SNP Chr Pos (hg19) 

Risk/other 

allele
b
   EUMangold PTrend 

ArabAldhorae 

PTrend  

EUMossey 

PTDT 

 

EU+AsiaBeaty   MetaAll 

rs6809420 3 117454822 T/G 

 

0.320 0.024 0.647  0.001 

 

2.80x10
-4

 

rs7732608
a
 5 155799466 A/G 

 

0.588 0.434 0.117  0.498 

 

0.218 

rs9347594
a
 6 162587892 C/T 

 

0.084 0.789 0.824  0.728 

 

0.249 

rs3740617
a
 11 33881016 C/T 

 

0.062 0.626 0.651  0.640 

 

0.232 

rs595533
a
 18 66441589 T/C 

 

0.147 0.961 0.712  0.087 

 

0.041 

SNP = single nucleotide polymorphism; Chr = Chromosome; Pos (hg19) = postion in human reference genome version 19  

 

Nominally significant P-values of the meta-analysis are given in bold; P-values given in italics indicate an opposite effect direction as in the meta-

analysis (MetaAll) 

 
a
 SNP derived from Leslie et al. 2016 

b
 risk allele according to MetaAll 

c 
Association P-values for EUMangold, ArabAldhorae and EUBeaty were calcualted using the Armitage trend test (PTrend); Association P-values for EUMossey 

were calcualted using the transmission disequilibrium test (PTDT) 
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Supplementary Figure S1: Regional association plot of rs595533 locus +/- 500kb. PEU+AsiaBeaty = P-value from 
imputed GWAS of all trios.  
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