134 research outputs found
Electronic states in a magnetic quantum-dot molecule: phase transitions and spontaneous symmetry breaking
We show that a double quantum-dot system made of diluted magnetic
semiconductor behaves unlike usual molecules. In a semiconductor double quantum
dot or in a diatomic molecule, the ground state of a single carrier is
described by a symmetric orbital. In a magnetic material molecule, new ground
states with broken symmetry can appear due the competition between the
tunnelling and magnetic polaron energy. With decreasing temperature, the ground
state changes from the normal symmetric state to a state with spontaneously
broken symmetry. Interestingly, the symmetry of a magnetic molecule is
recovered at very low temperatures. A magnetic double quantum dot with
broken-symmetry phases can be used a voltage-controlled nanoscale memory cell.Comment: 4 pages, 5 figure
Spin-Forster transfer in optically excited quantum dots
The mechanisms of energy and spin transfer in quantum dot pairs coupled via
the Coulomb interaction are studied. Exciton transfer can be resonant or
phonon-assisted. In both cases, the transfer rates strongly depend on the
resonance conditions. The spin selection rules in the transfer process come
from the exchange and spin-orbit interactions. The character of energy
dissipation in spin transfer is different than that in the traditional spin
currents. The spin-dependent photon cross-correlation functions reflect the
exciton transfer process. In addition, a mathematical method to calculate
F\"orster transfer in crystalline nanostructures beyond the dipole-dipole
approximation is described.Comment: 22 pages, 10 figures, Phys. Rev. B, in pres
- …