6 research outputs found

    Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic retinopathy (DR) is classically defined as a microvasculopathy that primarily affects the small blood vessels of the inner retina as a complication of diabetes mellitus (DM).It is a multifactorial disease with a strong genetic component. The aim of this study is to investigate the association of a set of nine candidate genes with the development of diabetic retinopathy in a South Indian cohort who have type 2 diabetes mellitus (T2DM).</p> <p>Methods</p> <p>Seven candidate genes (<it>RAGE, PEDF, AKR1B1, EPO, HTRA1, ICAM </it>and <it>HFE</it>) were chosen based on reported association with DR in the literature. Two more, <it>CFH </it>and ARMS2, were chosen based on their roles in biological pathways previously implicated in DR. Fourteen single nucleotide polymorphisms (SNPs) and one dinucleotide repeat polymorphism, previously reported to show association with DR or other related diseases, were genotyped in 345 DR and 356 diabetic patients without retinopathy (DNR). The genes which showed positive association in this screening set were tested further in additional sets of 100 DR and 90 DNR additional patients from the Aravind Eye Hospital. Those which showed association in the secondary screen were subjected to a combined analysis with the 100 DR and 100 DNR subjects previously recruited and genotyped through the Sankara Nethralaya Hospital, India. Genotypes were evaluated using a combination of direct sequencing, TaqMan SNP genotyping, RFLP analysis, and SNaPshot PCR assays. Chi-square and Fisher exact tests were used to analyze the genotype and allele frequencies.</p> <p>Results</p> <p>Among the nine loci (15 polymorphisms) screened, SNP rs2070600 (G82S) in the <it>RAGE </it>gene, showed significant association with DR (allelic P = 0.016, dominant model P = 0.012), compared to DNR. SNP rs2070600 further showed significant association with DR in the confirmation cohort (P = 0.035, dominant model P = 0.032). Combining the two cohorts gave an allelic P < 0.003 and dominant P = 0.0013). Combined analysis with the Sankara Nethralaya cohort gave an allelic P = 0.0003 and dominant P = 0.00011 with an OR = 0.49 (0.34 - 0.70) for the minor allele. In <it>HTRA1</it>, rs11200638 (G>A), showed marginal significance with DR (P = 0.055) while rs10490924 in LOC387715 gave a P = 0.07. No statistical significance was observed for SNPs in the other 7 genes studied.</p> <p>Conclusions</p> <p>This study confirms significant association of one polymorphism only (rs2070600 in <it>RAGE</it>) with DR in an Indian population which had T2DM.</p

    Mutational Analysis of MIR184 in Sporadic Keratoconus and Myopia

    Get PDF
    Author version made available in accordance with the publisher's policy.A mutation miR-184(+57C>T) in the seed region of miR-184 (encoded by MIR184 [MIM*613146]) results in familial severe keratoconus combined with early-onset anterior polar cataract and endothelial dystrophy, iris hypoplasia, congenital cataract, and stromal thinning (EDICT) syndrome (MIM#614303). In order to investigate the phenotypic spectrum resulting from MIR184 mutation, MIR184 was sequenced in a keratoconus cohort of mixed ethnicity and a Chinese axial myopia cohort. Sequencing of MIR184 was performed in 780 unrelated keratoconus patients and 96 unrelated Han southern Chinese subjects with axial myopia. Effects of identified mutations on RNA secondary structure were predicted computationally using mFold and RNAFold algorithms. MIR184 amplicons from patients harboring mutations were cloned and transfected into human embryonic kidney 293T (HEK293T) cells, and mature mutant miR-184 expression was analyzed by stem-loop real-time quantitative PCR (RT-qPCR). Two novel heterozygous substitution mutations in MIR184 were identified in the two patients with isolated keratoconus: miR-184(+8C>A) and miR-184(+3A>G). Computational modeling predicted that these mutations would alter the miR-184 stem-loop stability and secondary structure. Ex vivo miR-184 expression analysis demonstrated that miR-184(+8C>A) almost completely repressed the expression of miR-184 (P = 0.022), and miR-184(+3A>G) reduced the expression of miR-184 by approximately 40% (P = 0.002). There was no significant association of rs41280052, which lies within the stem-loop of miR-184, with keratoconus. No MIR184 mutations were detected in the axial myopia cohort. Two novel heterozygous substitution mutations in MIR184 were identified in two patients with isolated keratoconus: miR-184(+8C>A) and miR-184(+3A>G). Mutations in MIR184 are a rare cause of keratoconus and were found in 2 of 780 (0.25%) cases.Supported by Fight for Sight (United Kingdom; JL, CEW); The Research and Development Office, Northern Ireland (RRG Grant 4.46; CEW); Biotechnology and Biological Sciences Research Council, United Kingdom (Grant BB/H005498/1; JG-F, DAS); National Health and Medical Research Council of Australia (KPB, JEC); ALCON India (GG, MD, PS); and The Aravind Eye Care System (GG, MD, PS). JL is a Fight for Sight PhD student

    Homozygosity Mapping and Genetic Analysis of Autosomal Recessive Retinal Dystrophies in 144 Consanguineous Pakistani Families

    No full text
    Citation: Li L, Chen Y, Jiao X, et al. Homozygosity mapping and genetic analysis of autosomal recessive retinal dystrophies in 144 consanguineous Pakistani families. Invest Ophthalmol Vis Sci. 2017;58:221858: -223858: . DOI: 10.1167 PURPOSE. The Pakistan Punjab population has been a rich source for identifying genes causing or contributing to autosomal recessive retinal degenerations (arRD). This study was carried out to delineate the genetic architecture of arRD in the Pakistani population. METHODS. The genetic origin of arRD in a total of 144 families selected only for having consanguineous marriages and multiple members affected with arRD was examined. Of these, causative mutations had been identified in 62 families while only the locus had been identified for an additional 15. The remaining 67 families were subjected to homozygosity exclusion mapping by screening of closely flanking microsatellite markers at 180 known candidate genes/loci followed by sequencing of the candidate gene for pathogenic changes. RESULTS. Of these 67 families subjected to homozygosity mapping, 38 showed homozygosity for at least one of the 180 regions, and sequencing of the corresponding genes showed homozygous cosegregating mutations in 27 families. Overall, mutations were detected in approximately 61.8 % (89/144) of arRD families tested, with another 10.4% (15/144) being mapped to a locus but without a gene identified. CONCLUSIONS. These results suggest the involvement of unmapped novel genes in the remaining 27.8% (40/144) of families. In addition, this study demonstrates that homozygosity mapping remains a powerful tool for identifying the genetic defect underlying genetically heterogeneous arRD disorders in consanguineous marriages for both research and clinical applications
    corecore