69 research outputs found

    Inflammatory and deleterious role of gut microbiota-derived trimethylamine on colon cells

    Get PDF
    Trimethylamine (TMA) is produced by the intestinal microbiota as a by-product of metabolism of dietary precursors. TMA has been implicated in various chronic health conditions. However, the effect of TMA in the colon and the underlying mechanism was not clear. In this study, TMA exhibited toxic effects in vitro as well as in vivo. TMA-induced oxidative stress causes DNA damage, and compromised cell membrane integrity leading to the release of LDH outside the cells which ultimately leads to cell death. Besides, TMA also exhibited pronounced increase in cell cycle arrest at G2/M phase in both HCT116 and HT29 cell lines. TMA was found to be genotoxic and cytotoxic as the TMA concentration increased from 0.15 mM. A decreased ATP intracellular content was observed after 24 h, 48 h, and 72 h treatment in a time and dose-dependent manner. For in vivo research, TMA (100 mM, i.p. and intra-rectal) once a week for 12 weeks caused significant changes in cellular morphology of colon and rectum epithelium as assessed by H & E staining. TMA also significantly increased the infiltration of inflammatory cells in the colon and rectal epithelium indicating the severity of inflammation. In addition, TMA caused extensive mucosal damage and distortion in the epithelium, decrease in length of small intestine compared to control mice. In conclusion, these results highlight the detrimental effects of TMA in the colon and rectal epithelium

    Comparison of Small Gut and Whole Gut Microbiota of First-Degree Relatives With Adult Celiac Disease Patients and Controls

    Get PDF
    Recent studies on celiac disease (CeD) have reported alterations in the gut microbiome. Whether this alteration in the microbial community is the cause or effect of the disease is not well understood, especially in adult onset of disease. The first-degree relatives (FDRs) of CeD patients may provide an opportunity to study gut microbiome in pre-disease state as FDRs are genetically susceptible to CeD. By using 16S rRNA gene sequencing, we observed that ecosystem level diversity measures were not significantly different between the disease condition (CeD), pre-disease (FDR) and control subjects. However, differences were observed at the level of amplicon sequence variant (ASV), suggesting alterations in specific ASVs between pre-disease and diseased condition. Duodenal biopsies showed higher differences in ASVs compared to fecal samples indicating larger disruption of the microbiota at the disease site. The duodenal microbiota of FDR was characterized by significant abundance of ASVs belonging to Parvimonas, Granulicatella, Gemella, Bifidobacterium, Anaerostipes, and Actinomyces genera. The duodenal microbiota of CeD was characterized by higher abundance of ASVs from genera Megasphaera and Helicobacter compared to the FDR microbiota. The CeD and FDR fecal microbiota had reduced abundance of ASVs classified as Akkermansia and Dorea when compared to control group microbiota. In addition, predicted functional metagenome showed reduced ability of gluten degradation by CeD fecal microbiota in comparison to FDRs and controls. The findings of the present study demonstrate differences in ASVs and predicts reduced ability of CeD fecal microbiota to degrade gluten compared to the FDR fecal microbiota. Further research is required to investigate the strain level and active functional profiles of FDR and CeD microbiota to better understand the role of gut microbiome in pathophysiology of CeD

    The overlap between irritable bowel syndrome and non-celiac gluten sensitivity: A clinical dilemma

    No full text
    The spectrum of gluten-related disorders has widened in recent times and includes celiac disease, non-celiac gluten sensitivity, and wheat allergy. The complex of symptoms associated with these diseases, such as diarrhea, constipation or abdominal pain may overlap for the gluten related diseases, and furthermore they can be similar to those caused by various other intestinal diseases, such as irritable bowel syndrome (IBS). The mechanisms underlying symptom generation are diverse for all these diseases. Some patients with celiac disease may remain asymptomatic or have only mild gastrointestinal symptoms and thus may qualify for the diagnosis of IBS in the general clinical practice. Similarly, the overlap of symptoms between IBS and non-celiac gluten sensitivity (NCGS) often creates a dilemma for clinicians. While the treatment of NCGS is exclusion of gluten from the diet, some, but not all, of the patients with IBS also improve on a gluten-free diet. Both IBS and NCGS are common in the general population and both can coexist with each other independently without necessarily sharing a common pathophysiological basis. Although the pathogenesis of NCGS is not well understood, it is likely to be heterogeneous with possible contributing factors such as low-grade intestinal inflammation, increased intestinal barrier function and changes in the intestinal microbiota. Innate immunity may also play a pivotal role. One possible inducer of innate immune response has recently been reported to be amylase-trypsin inhibitor, a protein present in wheat endosperm and the source of flour, along with the gluten proteins

    Endoscopic features of gastrointestinal tuberculosis and crohn's disease

    No full text
    Endoscopic examination of the gastrointestinal (GI) tract plays a very important role in the diagnosis and follow-up of patients with Crohn's disease (CD) and intestinal tuberculosis (TB). The clinical, morphological, and histological features of GI TB and CD are so similar that it becomes difficult to differentiate between these two entities. In geographical regions such as India where both GI TB and CD are prevalent, differential diagnosis between the two is challenging. While there is a lot of similarities between these two disorders, these two can be differentiated from each other with a combination of clinical, endoscopic, histological, radiological, and endoscopic features. The observation of the characteristic lesions at endoscopic examination and the extent of involvement in CD and intestinal TB is an important step in differentiation between these two disorders. While the most important endoscopic characteristics such as involvement of left side of the colon and presence of longitudinal ulcerations and cobblestoning support a diagnosis of CD, predominant involvement of ileocecal region and transverse ulcers support the diagnosis of intestinal TB. In this review, we have described the usefulness and limitations of endoscopic modalities in the diagnosis and differentiation of intestinal TB and CD

    Supplementary Table 4a

    No full text
    <p>List of probes/genes with their gene expression pattern among CeD, FDR and Control.</p

    Supplementary Table 3a

    No full text
    <p>Gene ontology enrichment results for differentially expressed genes among FDR, CeD and Control</p

    Supplementary Table 3b

    No full text
    <p>MSigDB enrichment analysis based on genes which are down-regualted consistently in FDR</p
    corecore