43 research outputs found

    Cerebral small vessel disease : clinical impact and underlying pathology

    Get PDF
    Scheltens, P. [Promotor]Barkhof, F. [Promotor]Flier, W.M. van der [Copromotor

    Vascular Care in Patients With Alzheimer Disease With Cerebrovascular Lesions Slows Progression of White Matter Lesions on MRI The Evaluation of Vascular Care in Alzheimer's Disease (EVA) Study

    Get PDF
    Background and Purpose-White matter lesions (WMLs) and cerebral infarcts are common findings in Alzheimer disease and may contribute to dementia severity. WMLs and lacunar infarcts may provide a potential target for intervention strategies. This study assessed whether multicomponent vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of WMLs and prevents occurrence of new infarcts. Methods-A randomized controlled clinical trial, including 123 subjects, compared vascular care with standard care in patients with Alzheimer disease with cerebrovascular lesions on MRI. Progression of WMLs, lacunes, medial temporal lobe atrophy, and global cortical atrophy were semiquantitatively scored after 2-year follow-up. Results-Sixty-five subjects (36 vascular care, 29 standard care) had a baseline and a follow-up MRI and in 58 subjects, a follow-up scan could not be obtained due to advanced dementia or death. Subjects in the vascular care group had less progression of WMLs as measured with the WML change score (1.4 versus 2.3, P = 0.03). There was no difference in the number of new lacunes or change in global cortical atrophy or medial temporal lobe atrophy between the 2 groups. Conclusions-Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of WMLs. Treatment aimed at vascular risk factors in patients with early Alzheimer disease may be beneficial, possibly in an even earlier stage of the disease. (Stroke. 2010;41:554-556.

    Brain atrophy accelerates cognitive decline in cerebral small vessel disease: The LADIS study

    Get PDF
    Objective: To examine the independent contributions and combined interactions of medial temporal lobe atrophy (MTA), cortical and subcortical atrophy, and white matter lesion (WML) volume in longitudinal cognitive performance. Methods: A total of 477 subjects with age-relatedWMLwere evaluated with brain MRI and annual neuropsychological examinations in 3-year follow-up. Baseline MRI determinants of cognitive decline were analyzed with linear mixed models controlling for multiple confounders. Results: MTA and subcortical atrophy predicted significantly steeper rate of decline in global cognitive measures as well as compound scores for psychomotor speed, executive functions, and memory after adjusting for age, gender, education, lacunes/infarcts, and WML volume. Cortical atrophy independently predicted decline in psychomotor speed. WML volume remained significantly associated with cognitive decline even after controlling for the atrophy scores. Moreover, significant synergistic interactions were found between WML and atrophy measures in overall cognitive performance across time and the rate of cognitive decline. Synergistic effects were also observed between baseline lacunar infarcts and all atrophy measures on change in psychomotor speed. The main results remained robust after exclusion of subjects with clinical stroke or incident dementia, and after additional adjustments for progression of WML and lacunes. Conclusions: Brain atrophy and WML are independently related to longitudinal cognitive decline in small vessel disease. MTA, subcortical, and cortical atrophy seem to potentiate the effect ofWML and lacunes on cognitive decline

    Location of lacunar infarcts correlates with cognition in a sample of non-disabled subjects with age-related white-matter changes: the LADIS study

    Get PDF
    Objectives: In cerebral small vessel disease, whitematter hyperintensities (WMH) and lacunes are both related to cognition. Still, their respective contribution in older people remains unclear. The purpose of this study is to assess the topographic distribution of lacunes and determine whether it has an impact on cognitive functions in a sample of non-disabled patients with age-related white-matter changes. Methods: Data were drawn from the baseline evaluation of the LADIS (Leucoaraioisis and Disability study) cohort of non-disabled subjects beyond 65 years of age. The neuropsychological evaluation was based on the Mini Mental Status Examination (MMSE), a modified Alzheimer Diseases Assessment Scale for global cognitive functions, and compound Z scores for memory, executive functions, speed and motor control. WMH were rated according to the Fazekas scale; the number of lacunes was assessed in the following areas: lobar white matter, putamen/ pallidum, thalamus, caudate nucleus, internal/external capsule, infratentorial areas. An analysis of covariance was performed after adjustment for possible confounders. Results: Among 633 subjects, 47% had at least one lacune (31% at least one within basal ganglia). The presence of lacunes in the thalamus was associated with lower scores of MMSE (b=20.61; p=0.043), and worse compound scores for speed and motor control (b=20.25; p=0.006), executive functions (b=20.19; p=0.022) independently of the cognitive impact of WMH. There was also a significant negative association between the presence of lacunes in putamen/ pallidum and the memory compound Z score (b=20.13; p=0.038). By contrast, no significant negative association was found between cognitive parameters and the presence of lacunes in internal capsule, lobar white matter and caudate nucleus. Conclusion: In non-disabled elderly subjects with leucoaraisosis, the location of lacunes within subcortical grey matter is a determinant of cognitive impairment, independently of the extent of WMH

    White Matter Lesion Progression in LADIS Frequency, Clinical Effects, and Sample Size Calculations

    Get PDF
    BACKGROUND AND PURPOSE: White matter lesion (WML) progression has been advocated as a surrogate marker in intervention trials on cerebral small vessel disease. We assessed the rate of visually rated WML progression, studied correlations between lesion progression and cognition, and estimated sample sizes for clinical trials with pure WML progression vs combined WML progression-cognitive outcomes. METHODS: Those 394 participants of the Leukoaraiosis and Disability Study (LADIS) study with magnetic resonance imaging scanning at baseline and 3-year follow-up were analyzed. WML progression rating relied on the modified Rotterdam Progression Scale. The Vascular Dementia Assessment Scale global score and a composite score of specific executive function tests assessed longitudinal change in cognition. Sample size calculations were based on the assumption that treatment reduces WML progression by 1 grade on the Rotterdam Progression Scale. RESULTS: WML progression related to deterioration in cognitive functioning. This relationship was less pronounced in subjects with early confluent and confluent lesions. Consequently, studies in which the outcome is cognitive change resulting from treatment effects on lesion progression will need between 1809 subjects per treatment arm when using executive tests and up to 18 853 subjects when using the Vascular Dementia Assessment Scale score. Studies having WML progression as the sole outcome will need only 58 or 70 individuals per treatment arm. CONCLUSIONS: WML progression is an interesting outcome for proof-of-concept studies in cerebral small vessel disease. If cognitive outcome measures are added to protocols, then sample size estimates increase substantially. Our data support the use of an executive test battery rather than the Vascular Dementia Assessment Scale as the primary cognitive outcome measure

    Diffusion-Weighted Imaging and Cognition in the Leukoariosis and Disability in the Elderly Study

    Get PDF
    BACKGROUND AND PURPOSE-: The mechanisms by which leukoariosis impacts on clinical and cognitive functions are not yet fully understood. We hypothesized that ultrastructural abnormalities of the normal-appearing brain tissue (NABT) assessed by diffusion-weighted imaging played a major and independent role. METHODS-: In addition to a comprehensive clinical, neuropsychologic, and imaging work-up, diffusion-weighted imaging was performed in 340 participants of the multicenter leukoariosis and disability study examining the impact of white matter hyperintensities (WMH) on 65-to 85-year old individuals without previous disability. WMH severity was rated according to the Fazekas score. Multivariate regression analysis served to assess correlations of histogram metrics of the apparent diffusion coefficient (ADC) of whole-brain tissue, NABT, and of the mean ADC of WMH with cognitive functions. RESULTS-: Increasing WMH scores were associated with a higher frequency of hypertension, a greater WMH volume, more brain atrophy, worse overall cognitive performance, and changes in ADC. We found strong associations between the peak height of the ADC histogram of whole-brain tissue and NABT with memory performance, executive dysfunction, and speed, which remained after adjustment for WMH lesion volume and brain atrophy and were consistent among centers. No such association was seen with the mean ADC of WMH. CONCLUSIONS-: Ultrastructural abnormalities of NABT increase with WMH severity and have a strong and independent effect on cognitive functions, whereas diffusion-weighted imaging metrics within WMH have no direct impact. This should be considered when defining outcome measures for trials that attempt to ameliorate the consequences of WMH progression

    Validation of In Vivo Nodal Assessment of Solid Malignancies with USPIO-Enhanced MRI: A Workflow Protocol

    Get PDF
    Background: In various cancer types, the first step towards extended metastatic disease is the presence of lymph node metastases. Imaging methods with sufficient diagnostic accuracy are required to personalize treatment. Lymph node metastases can be detected with ultrasmall superpara-magnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI), but this method needs validation. Here, a workflow is presented, which is designed to compare MRI-visible lymph nodes on a node-to-node basis with histopathology. Methods: In patients with prostate, rectal, periampullary, esophageal, and head-and-neck cancer, in vivo USPIO-enhanced MRI was performed to detect lymph nodes suspicious of harboring metastases. After lymphadenectomy, but before histopathological assessment, a 7 Tesla preclinical ex vivo MRI of the surgical specimen was performed, and in vivo MR images were radiologically matched to ex vivo MR images. Lymph nodes were annotated on the ex vivo MRI for an MR-guided pathological examination of the specimens. Results: Matching lymph nodes of ex vivo MRI to pathology was feasible in all cancer types. The annotated ex vivo MR images enabled a comparison between USPIO-enhanced in vivo MRI and histopathology, which allowed for analyses on a nodal, or at least on a nodal station, basis. Conclusions: A workflow was developed to validate in vivo USPIO-enhanced MRI with histopathology. Guiding the pathologist towards lymph nodes in the resection specimens during histopathological work-up allowed for the analysis at a nodal basis, or at least nodal station basis, of in vivo suspicious lymph nodes with corresponding histopathology, providing direct information for validation of in vivo USPIO-enhanced, MRI-detected lymph nodes
    corecore