4,309 research outputs found

    Convex Hulls of Algebraic Sets

    Full text link
    This article describes a method to compute successive convex approximations of the convex hull of a set of points in R^n that are the solutions to a system of polynomial equations over the reals. The method relies on sums of squares of polynomials and the dual theory of moment matrices. The main feature of the technique is that all computations are done modulo the ideal generated by the polynomials defining the set to the convexified. This work was motivated by questions raised by Lov\'asz concerning extensions of the theta body of a graph to arbitrary real algebraic varieties, and hence the relaxations described here are called theta bodies. The convexification process can be seen as an incarnation of Lasserre's hierarchy of convex relaxations of a semialgebraic set in R^n. When the defining ideal is real radical the results become especially nice. We provide several examples of the method and discuss convergence issues. Finite convergence, especially after the first step of the method, can be described explicitly for finite point sets.Comment: This article was written for the "Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications

    Theta Bodies for Polynomial Ideals

    Full text link
    Inspired by a question of Lov\'asz, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lov\'asz's theta body of the graph. We prove that theta bodies are, up to closure, a version of Lasserre's relaxations for real solutions to ideals, and that they can be computed explicitly using combinatorial moment matrices. Theta bodies provide a new canonical set of semidefinite relaxations for the max cut problem. For vanishing ideals of finite point sets, we give several equivalent characterizations of when the first theta body equals the convex hull of the points. We also determine the structure of the first theta body for all ideals.Comment: 26 pages, 3 figure

    Approximate cone factorizations and lifts of polytopes

    Full text link
    In this paper we show how to construct inner and outer convex approximations of a polytope from an approximate cone factorization of its slack matrix. This provides a robust generalization of the famous result of Yannakakis that polyhedral lifts of a polytope are controlled by (exact) nonnegative factorizations of its slack matrix. Our approximations behave well under polarity and have efficient representations using second order cones. We establish a direct relationship between the quality of the factorization and the quality of the approximations, and our results extend to generalized slack matrices that arise from a polytope contained in a polyhedron

    Polytopes of Minimum Positive Semidefinite Rank

    Full text link
    The positive semidefinite (psd) rank of a polytope is the smallest kk for which the cone of k×kk \times k real symmetric psd matrices admits an affine slice that projects onto the polytope. In this paper we show that the psd rank of a polytope is at least the dimension of the polytope plus one, and we characterize those polytopes whose psd rank equals this lower bound. We give several classes of polytopes that achieve the minimum possible psd rank including a complete characterization in dimensions two and three
    • …
    corecore