178 research outputs found

    Structure properties of even-even actinides

    Full text link
    Structure properties of fifty five even-even actinides have been calculated using the Gogny D1S force and the Hartree-Fock-Bogoliubov approach as well as the configuration mixing method. Theoretical results are compared with experimental data.Comment: 5 pages, 5 figures, proceeding of FUSION0

    Structure properties of 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm fission fragments: mean field analysis with the Gogny force

    Full text link
    The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization and total fragment kinetic energies.Comment: 15 pages, 23 figures, accepted for publication in Phys. Rev. C (2007

    Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

    Full text link
    A systematic study of low energy nuclear structure at normal deformation is carried out using the Hartree-Fock-Bogoliubov theory extended by the Generator Coordinate Method and mapped onto a 5-dimensional collective quadrupole Hamiltonian. Results obtained with the Gogny D1S interaction are presented from dripline to dripline for even-even nuclei with proton numbers Z=10 to Z=110 and neutron numbers N less than 200. The properties calculated for the ground states are their charge radii, 2-particle separation energies, correlation energies, and the intrinsic quadrupole shape parameters. For the excited spectroscopy, the observables calculated are the excitation energies and quadrupole as well as monopole transition matrix elements. We examine in this work the yrast levels up to J=6, the lowest excited 0^+ states, and the two next yrare 2^+ states. The theory is applicable to more than 90% of the nuclei which have tabulated measurements. The data set of the calculated properties of 1712 even-even nuclei, including spectroscopic properties for 1693 of them, are provided in CEA website and EPAPS repository with this article \cite{epaps}.Comment: 51 pages with 26 Figures and 4 internal tables; this version is accepted by Physical Review

    Microscopic and non-adiabatic Schr\"odinger equation derived from the Generator Coordinate Method based on 0 and 2 quasiparticle HFB states

    Full text link
    A new approach called the Schr\"odinger Collective Intrinsic Model (SCIM) has been developed to achieve a microscopic description of the coupling between collective and intrinsic excitations. The derivation of the SCIM proceeds in two steps. The first step is based on a generalization of the symmetric moment expansion of the equations derived in the framework of the Generator Coordinate Method (GCM), when both Hartree-Fock-Bogoliubov (HFB) states and two-quasi-particle excitations are taken into account as basis states. The second step consists in reducing the generalized Hill and Wheeler equation to a simpler form to extract a Schr\"odinger-like equation. The validity of the approach is discussed by means of results obtained for the overlap kernel between HFB states and two-quasi-particle excitations at different deformations.Comment: 27 pages, 12 figures, submitted to Phys. Rev.

    Role of deformation on giant resonances within the QRPA approach and the Gogny force

    Full text link
    Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed 2628^{26-28}Si and 2224^{22-24}Mg nuclei as well as in the spherical 30^{30}Si and 28^{28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.Comment: 12 pages, 6 figures and 4 tables, accepted in PR

    Magnetic Moment of the Fragmentation Aligned 61Fe(9/2)+ Isomer

    Full text link
    We report on the g factor measurement of the isomer in 61Fe^{61}Fe (E=861keVE^{*}=861 keV). The isomer was produced and spin-aligned via a projectile-fragmentation reaction at intermediate energy, the Time Dependent Perturbed Angular Distribution (TDPAD) method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the isomer has been observed, allowing a precise determination of its g factor: g=0.229(2)g=-0.229(2). Comparison of the experimental g factor with shell-model and mean field calculations confirms the 9/2+9/2^+ spin and parity assignments and suggests the onset of deformation due to the intrusion of Nilsson orbitals emerging from the νg9/2\nu g_{9/2}.Comment: 4 figures. Submitted to Phys. Rev. Let
    corecore