50 research outputs found

    Non-monotonous short-time decay of the Loschmidt echo in quasi-one-dimensional systems

    Get PDF
    We study the short-time stability of quantum dynamics in quasi-one-dimensional systems with respect to small localized perturbations of the potential. To this end, we address, analytically and numerically, the decay of the Loschmidt echo (LE) during times short compared to the Ehrenfest time. We find that the LE is generally a non-monotonous function of time and exhibits strongly pronounced minima and maxima at the instants of time when the corresponding classical particle traverses the perturbation region. We also show that, under general conditions, the envelope decay of the LE is well approximated by a Gaussian, and we derive explicit analytical formulas for the corresponding decay time. Finally, we demonstrate that the observed non-monotonicity of the LE decay is only pertinent to one-dimensional (and, more generally, quasi-one-dimensional systems), and that the short-time decay of the LE can be monotonous in higher number of dimensions

    Diffraction in time: An exactly solvable model

    Get PDF
    In recent years, matter-wave interferometry has attracted growing attention due to its unique suitability for high-precision measurements and the study of fundamental aspects of quantum theory. Diffraction and interference of matter waves can be observed not only at a spatial aperture (such as a screen edge, slit, or grating), but also at a time-domain aperture (such as an absorbing barrier, or “shutter,” that is being periodically switched on and off). The wave phenomenon of the latter type is commonly referred to as “diffraction in time.” Here, we introduce a versatile, exactly solvable model of diffraction in time. It describes time evolution of an arbitrary initial quantum state in the presence of a time-dependent absorbing barrier, governed by an arbitrary aperture function. Our results enable a quantitative description of diffraction and interference patterns in a large variety of setups, and may be used to devise new diffraction and interference experiments with atoms and molecules

    Manipulating quantum wave packets via time-dependent absorption

    Get PDF
    A pulse of matter waves may dramatically change its shape when traversing an absorbing barrier with time-dependent transparency. Here we show that this effect can be utilized for controlled manipulation of spatially localized quantum states. In particular, in the context of atom-optics experiments, we explicitly demonstrate how the proposed approach can be used to generate spatially shifted, split, squeezed, and cooled atomic wave packets. We expect our work to be useful in devising new interference experiments with atoms and molecules and, more generally, to enable new ways of coherent control of matter waves

    Quantum backflow in a ring

    Get PDF
    Free motion of a quantum particle with the wave function entirely comprised of plane waves with non-negative momenta may be accompanied by negative probability current, an effect called quantum backflow. The effect is weak and fragile, and has not yet been observed experimentally. Here we show that quantum backflow becomes significantly more pronounced and more amenable to experimental observation if, instead of letting the particle move along a straight line, one forces it to move in a circular ring.Comment: 6 pages, 4 figure

    Rotating Gaussian wave packets in weak external potentials

    Get PDF
    We address the time evolution of two- and three-dimensional nonrelativistic Gaussian wave packets in the presence of a weak external potential of arbitrary functional form. The focus of our study is the phenomenon of rotation of a Gaussian wave packet around its center of mass, as quantified by mean angular momentum computed relative to the wave packet center. Using a semiclassical approximation of the eikonal type, we derive an explicit formula for a time-dependent change of mean angular momentum of a wave packet induced by its interaction with a weak external potential. As an example, we apply our analytical approach to the scenario of a two-dimensional quantum particle crossing a tilted ridge potential barrier. In particular, we demonstrate that the initial orientation of the particle wave packet determines the sense of its rotation, and report a good agreement between analytical and numerical results

    Probability backflow for correlated quantum states

    Get PDF
    In its original formulation, quantum backflow (QB) is an interference effect that manifests itself as a negative probability transfer for free-particle states comprised of plane waves with only positive momenta. Quantum reentry (QR) is another interference effect in which a wave packet expanding from a spatial region of its initial confinement partially returns to the region in the absence of any external forces. Here we show that both QB and QR are special cases of a more general classically-forbidden probability flow for quantum states with certain position-momentum correlations. We further demonstrate that it is possible to construct correlated quantum states for which the amount of probability transferred in the "wrong" (classically impossible) direction exceeds the least upper bound on the corresponding probability transfer in the QB and QR problems, known as the Bracken-Melloy constant.Comment: 11 pages, 5 figure

    Lyapunov spreading of semi-classical wave packets for the Lorentz Gas: theory and applications

    Get PDF
    We consider the quantum mechanical propagator for a particle moving in a dd-dimensional Lorentz gas, with fixed, hard sphere scatterers. To evaluate this propagator in the semi-classical region, and for times less than the Ehrenfest time, we express its effect on an initial Gaussian wave packet in terms of quantities analogous to those used to describe the exponential separation of trajectories in the classical version of this system. This result relates the spread of the wave packet to the rate of separation of classical trajectories, characterized by positive Lyapunov exponents. We consider applications of these results, first to illustrate the behavior of the wave-packet auto-correlation functions for wave packets on periodic orbits. The auto-correlation function can be related to the fidelity, or Loschmidt echo, for the special case that the perturbation is a small change in the mass of the particle. An exact expression for the fidelity, appropriate for this perturbation, leads to an analytical result valid over very long time intervals, inversely proportional to the size of the mass perturbation. For such perturbations, we then calculate the long-time echo for semi-classical wave packets on periodic orbits. This paper also corrects an earlier calculation for a quantum echo, included in a previous version of this paper. We explain the reasons for this correction

    Simulating quantum backflow on a quantum computer

    Full text link
    Quantum backflow is a counterintuitive effect in which the probability density of a free particle moves in the direction opposite to the particle's momentum. If the particle is electrically charged, then the effect can be viewed as the contrast between the direction of electric current and that of the momentum. To date, there has been no direct experimental observation of quantum backflow. However, the effect has been simulated numerically (using classical computers) and optically (using classical light). In this study, we present the first simulation of quantum backflow using a real quantum computer.Comment: 7 pages, 2 figure
    corecore