85 research outputs found

    A Qualitative study of the knowledge, attitude and practice of patients regarding the use of expired and disposal of unused medicine at Nimra Institute of medical sciences, Vijayawada.

    Get PDF
    The study was conducted to explore the knowledge, attitude and practice toward disposal of unused medication among patients in Nimra Institute of Medical Sciences. The disposal of unwanted medications has been a concern globally, as pharmaceutical waste enters the ecosystem, ultimately effecting human health and environment Drug wastage is considered as a better tool to measure the efficiency and success of health care system. Though the presence of drugs in the environment is mainly attributed to presence of drugs in human excreta, a significant role is played by improper methods of drug disposal Materials & Methods: This qualitative study was an in-depth interview conducted during the period from November 2016 to January 2017. A total of 150 patients participated in this study. Once the participants identified , an appointment was fixed to conduct the interview with them. Due to the small sample size the data were analyzed manually. Results: A total of 150 patients attending General Medicine, Surgery, Obstetrics, and Gynecology OPDs were enrolled. Out of the 150 consumers 55% were men and 45% were women. Sources of medicines for patients included pharmacy stores (85, 56%) with or without (35, 24%) doctor’s prescription, and unused medicine at home (20, 12.5%) or friends and relatives (10, 7.5%). Conclusion: Majority of patients are aware about the need for safe disposal of unused medicines. But the right knowledge, attitude and practice of safe disposal of medicines is lacking. The existing guidelines should be implemented to ensure patients' safety and to preserve the ecosystem

    ISOLATION AND CHARACTERIZATION OF ACTINOMYCETES FROM SOIL OF AD-DAWADMI, SAUDI ARABIA AND SCREENING THEIR ANTIBACTERIAL ACTIVITIES

    Get PDF
    Objective: To isolate and characterize novel actinomycetes and to evaluate their antibacterial activity against drug-resistant pathogenic bacteriaMethods: In the present study, 19 soil samples were collected from different localities of Ad-Dawadmi, Saudi Arabia. Actinomycetes were isolated from these samples using serial dilution and plating method on Actinomycetes isolation agar supplemented with nalidixic acid and actidione to inhibit bacteria and fungi. Crude extracts of potential actinomycetes were produced by submerged fermentation. The antimicrobial activity of crude extracts of actinomycetes was tested against different bacteria using the agar well diffusion method. Characterization of the isolates was done by morphological, physiological and biochemical methods.Results: A total of 9 (47%) isolates of actinomycetes were isolated from 19 different soil samples tested. Among them, 4 (44%) isolates confirmed as Streptomyces sp. showed potential antimicrobial activity against one or more test organisms. Crude extracts were made from these 4 actinomycetes isolates(DOM1, DOM3, DP3, DP4)and tested for their antibacterial activities against 4 different clinical bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus). Crude extract from DP3 isolate showed highest antibacterial activity against all the four test organisms (28 mm, 21 mm, 20 mm and 18 mm) respectively and DP4 showed lowest antibacterial activity against all the four test organisms (14 mm, 12 mm, 0 mm, 6 mm) respectively. The highest zone of inhibition was shown by DP3 against Staphylococcus aureus (28 mm) and Escherichia coli was resistant for DP4. Most of the Inhibition zones produced by crude extracts showed significant differences when compared with control, tested against test organisms (P<0.05). Inhibition zones produced by DP3 and DOM1 against Staphylococcus aureus were 28 mm and 23 mm, respectively which were strong active when compared with control Ciprofloxacin (18 mm).Conclusion: Further studies for purification of bioactive metabolites and molecular characterization analysis of isolated Streptomyces sp. are in progress which would be helpful in discovering novel compounds of commercial value

    Renewable Energy System with High performance Hybrid Cascaded Inverter

    Get PDF
    In this paper, Renewal energy system with high performance Hybrid cascaded inverter is proposed. It is based on two kinds of power devices those are MOSFET and IGBT and also the cascaded inverter consists of three H-bridges. The DC voltage of each H-bridge meets the proportional relationship of 1:2:4 and the three modules are connected in series at the AC side. The low voltage bridge is composed of MOSFETs, while the medium and high voltage bridges are composed of IGBTs. This hybrid cascaded inverter can output at most 15 voltage levels at the AC side with rather low switching frequency. At the same time, it can fully exhibit the advantages of different power devices and make the inverter operation flexible. Voltage gradational and PWM carrier modulation methods are adopted in this paper. With different combination of switching states, the distribution of input active power in each H-bridge can be adjusted. As a result, for renewable energy system, larger control freedom is provided and the need of power balance is satisfied. The inverter system is verified with simulation results

    Biosynthesized Silver Nanoparticle (AgNP) From Pandanus odorifer Leaf Extract Exhibits Anti-metastasis and Anti-biofilm Potentials

    Get PDF
    Cancer and the associated secondary bacterial infections are leading cause of mortality, due to the paucity of effective drugs. Here, we have synthesized silver nanoparticles (AgNPs) from organic resource and confirmed their anti-cancer and anti-microbial potentials. Microwave irradiation method was employed to synthesize AgNPs using Pandanus odorifer leaf extract. Anti-cancer potential of AgNPs was evaluated by scratch assay on the monolayer of rat basophilic leukemia (RBL) cells, indicating that the synthesized AgNPs inhibit the migration of RBL cells. The synthesized AgNPs showed MIC value of 4–16 ”g/mL against both Gram +ve and Gram -ve bacterial strains, exhibiting the anti-microbial potential. Biofilm inhibition was recorded at sub- MIC values against Gram +ve and Gram -ve bacterial strains. Violacein and alginate productions were reduced by 89.6 and 75.6%, respectively at 4 and 8 ”g/mL of AgNPs, suggesting anti-quorum sensing activity. Exopolysaccharide production was decreased by 61–79 and 84% for Gram +ve and Gram -ve pathogens respectively. Flagellar driven swarming mobility was also reduced significantly. Furthermore, In vivo study confirmed their tolerability in mice, indicating their clinical perspective. Collective, we claim that the synthesized AgNPs have anti-metastasis as well as anti-microbial activities. Hence, this can be further tested for therapeutic options to treat cancer and secondary bacterial infections

    Biosynthesized Silver Nanoparticle (AgNP) From Pandanus odorifer Leaf Extract Exhibits Anti-metastasis and Anti-biofilm Potentials

    Get PDF
    Cancer and the associated secondary bacterial infections are leading cause of mortality, due to the paucity of effective drugs. Here, we have synthesized silver nanoparticles (AgNPs) from organic resource and confirmed their anti-cancer and anti-microbial potentials. Microwave irradiation method was employed to synthesize AgNPs using Pandanus odorifer leaf extract. Anti-cancer potential of AgNPs was evaluated by scratch assay on the monolayer of rat basophilic leukemia (RBL) cells, indicating that the synthesized AgNPs inhibit the migration of RBL cells. The synthesized AgNPs showed MIC value of 4–16 ”g/mL against both Gram +ve and Gram -ve bacterial strains, exhibiting the anti-microbial potential. Biofilm inhibition was recorded at sub- MIC values against Gram +ve and Gram -ve bacterial strains. Violacein and alginate productions were reduced by 89.6 and 75.6%, respectively at 4 and 8 ”g/mL of AgNPs, suggesting anti-quorum sensing activity. Exopolysaccharide production was decreased by 61–79 and 84% for Gram +ve and Gram -ve pathogens respectively. Flagellar driven swarming mobility was also reduced significantly. Furthermore, In vivo study confirmed their tolerability in mice, indicating their clinical perspective. Collective, we claim that the synthesized AgNPs have anti-metastasis as well as anti-microbial activities. Hence, this can be further tested for therapeutic options to treat cancer and secondary bacterial infections

    The Present and Future Role of Insect-Resistant Genetically Modified Maize in IPM

    Get PDF
    Commercial, genetically-modified (GM) maize was first planted in the United States (USA, 1996) and Canada (1997) but now is grown in 13 countries on a total of over 35 million hectares (\u3e24% of area worldwide). The first GM maize plants produced a Cry protein derived from the soil bacteriumBacillus thuringiensis (Bt), which made them resistant to European corn borer and other lepidopteran maize pests. New GM maize hybrids not only have resistance to lepidopteran pests but some have resistance to coleopteran pests and tolerance to specific herbicides. Growers are attracted to the Btmaize hybrids for their convenience and because of yield protection, reduced need for chemical insecticides, and improved grain quality. Yet, most growers worldwide still rely on traditional integrated pest management (IPM) methods to control maize pests. They must weigh the appeal of buying insect protection “in the bag” against questions regarding economics, environmental safety, and insect resistance management (IRM). Traditional management of maize insects and the opportunities and challenges presented by GM maize are considered as they relate to current and future insect-resistant products. Four countries, two that currently have commercialize Bt maize (USA and Spain) and two that do not (China and Kenya), are highlighted. As with other insect management tactics (e.g., insecticide use or tillage), GM maize should not be considered inherently compatible or incompatible with IPM. Rather, the effect of GM insect-resistance on maize IPM likely depends on how the technology is developed and used
    • 

    corecore