194 research outputs found

    A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing

    Get PDF
    Acid-sensitive K+ channels of the tandem P-domain K+-channel family (TASK-1 and TASK-3) have been implicated in peripheral and central respiratory chemosensitivity; however, because of the lack of decisive pharmacological agents, the final proof of the role of the TASK channel in the chemosensory control of breathing has been missing. In the mouse, TASK-1 and TASK-3 channels are dispensable for central respiratory chemosensitivity (Mulkey et al., 2007Go). Here, we have used knock-out animals to determine whether TASK-1 and TASK-3 channels play a role in the carotid body function and chemosensory control of breathing exerted by the carotid body chemoreceptors. Ventilatory responses to hypoxia (10% O2 in inspired air) and moderate normoxic hypercapnia (3–6% CO2 in inspired air) were significantly reduced in TASK-1 knock-out mice. In contrast, TASK-3-deficient mice showed responses to both stimuli that were similar to those developed by their wild-type counterparts. TASK-1 channel deficiency resulted in a marked reduction of the hypoxia (by 49%)- and CO2 (by 68%)-evoked increases in the carotid sinus nerve chemoafferent discharge recorded in the in vitro superfused carotid body/carotid sinus nerve preparations. Deficiency in both TASK-1 and TASK-3 channels increased baseline chemoafferent activity but did not cause a further reduction of the carotid body chemosensory responses. These observations provide direct evidence that TASK-1 channels contribute significantly to the increases in the carotid body chemoafferent discharge in response to a decrease in arterial PO2 or an increase in PCO2/[H+]. TASK-1 channels therefore play a key role in the control of ventilation by peripheral chemoreceptors

    Differential sensitivity of brainstem vs cortical astrocytes to changes in pH reveals functional regional specialization of astroglia

    Get PDF
    Astrocytes might function as brain interoceptors capable of detecting different (chemo)sensory modalities and transmitting sensory information to the relevant neural networks controlling vital functions. For example, astrocytes which reside near the ventral surface of the brainstem (central respiratory chemosensitive area) respond to physiological decreases in pH with vigorous elevations in intracellular Ca(2+) and release of ATP. ATP transmits astroglial excitation to the brainstem respiratory network and contributes to adaptive changes in lung ventilation. Here we show that in terms of pH-sensitivity ventral brainstem astrocytes are clearly distinct from astrocytes residing in the cerebral cortex. We monitored vesicular fusion in cultured rat brainstem astrocytes using total internal reflection fluorescence microscopy and found that approximately 35% of them respond to acidification with an increased rate of exocytosis of ATP-containing vesicular compartments. These fusion events require intracellular Ca(2+) signaling and are independent of autocrine ATP actions. In contrast, the rate of vesicular fusion in cultured cortical astrocytes is not affected by changes in pH. Compared to cortical astrocytes, ventral brainstem astrocytes display higher levels of expression of genes encoding proteins associated with ATP vesicular transport and fusion, including vesicle-associated membrane protein-3 and vesicular nucleotide transporter. These results suggest that astrocytes residing in different parts of the rat brain are functionally specialized. In contrast to cortical astrocytes, astrocytes of the brainstem chemosensitive area(s) possess signaling properties which are functionally relevant – they are able to sense changes in pH and respond to acidification with enhanced vesicular release of ATP

    Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome

    Get PDF
    Rett syndrome is a prototypical neurological disorder characterised by abnormal breathing pattern and reduced ventilatory CO2 sensitivity. Medullary astrocytes are a crucial component of central CO2 /pH chemosensitivity. This study tested the hypotheses that methyl-CpG-binding protein 2 (MeCP2) deficient medullary astrocytes are (i) unable to produce/release appropriate amounts of lactate, and/or (ii) unable to sense changes in PCO2/[H(+) ]. We found no differences in tonic or hypoxia-induced release of lactate from the ventral surface of the medulla oblongata or cerebral cortex between MeCP2-knockout and wild-type mice. Respiratory acidosis triggered robust [Ca(2+) ]i responses in wild-type astrocytes residing near the ventral surface of the medulla oblongata. CO2 -induced [Ca(2+) ]i responses in astrocytes were dramatically reduced in conditions of MeCP2 deficiency. These data suggest that (i) 'metabolic' function of astrocytes in releasing lactate into the extracellular space is not affected by MeCP2 deficiency, and (ii) MeCP2 deficiency impairs the ability of medullary astrocytes to sense changes in PCO2/[H(+) ]

    Glucagon-Like Peptide-1 (GLP-1) Mediates Cardioprotection by Remote Ischaemic Conditioning

    Get PDF
    AIMS: Although the nature of the humoral factor which mediates cardioprotection established by remote ischaemic conditioning (RIc) remains unknown, parasympathetic (vagal) mechanisms appear to play a critical role. As the production and release of many gut hormones is modulated by the vagus nerve, here we tested the hypothesis that RIc cardioprotection is mediated by the actions of glucagon-like peptide-1 (GLP-1). METHODS AND RESULTS: A rat model of myocardial infarction (coronary artery occlusion followed by reperfusion) was used. Remote ischaemic pre- (RIPre) and perconditioning (RIPer) was induced by 15 min occlusion of femoral arteries applied prior to or during the myocardial ischaemia. The degree of RIPre and RIPer cardioprotection was determined in conditions of cervical or subdiaphragmatic vagotomy, or following blockade of GLP-1 receptors (GLP-1R) using specific antagonist Exendin(9-39). Phosphorylation of PI3K/AKT and STAT3 was assessed. RIPre and RIPer reduced infarct size by ~50%. In conditions of bilateral cervical or subdiaphragmatic vagotomy RIPer failed to establish cardioprotection. GLP-1R blockade abolished cardioprotection induced by either RIPre or RIPer. Exendin(9-39) also prevented RIPre-induced AKT phosphorylation. Cardioprotection induced by GLP-1R agonist Exendin-4 was preserved following cervical vagotomy, but was abolished in conditions of M3 muscarinic receptor blockade. CONCLUSIONS: These data strongly suggest that GLP-1 functions as a humoral factor of remote ischaemic conditioning cardioprotection. This phenomenon requires intact vagal innervation of the visceral organs and recruitment of GLP-1R-mediated signalling. Cardioprotection induced by GLP-1R agonism is mediated by a mechanism involving M3 muscarinic receptors

    Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones

    Get PDF
    AIMS: Innate mechanisms of inter-organ protection underlie the phenomenon of remote ischaemic preconditioning (RPc) in which episode(s) of ischaemia and reperfusion in tissues remote from the heart reduce myocardial ischaemia/reperfusion injury. The uncertainty surrounding the mechanism(s) underlying RPc centres on whether humoral factor(s) produced during ischaemia/reperfusion of remote tissue and released into the systemic circulation mediate RPc, or whether a neural signal is required. While these two hypotheses may not be incompatible, one approach to clarify the potential role of a neural pathway requires targeted disruption or activation of discrete central nervous substrate(s). METHODS AND RESULTS: Using a rat model of myocardial ischaemia/reperfusion injury in combination with viral gene transfer, pharmaco-, and optogenetics, we tested the hypothesis that RPc cardioprotection depends on the activity of vagal pre-ganglionic neurones and consequently an intact parasympathetic drive. For cell-specific silencing or activation, neurones of the brainstem dorsal motor nucleus of the vagus nerve (DVMN) were targeted using viral vectors to express a Drosophila allatostatin receptor (AlstR) or light-sensitive fast channelrhodopsin variant (ChIEF), respectively. RPc cardioprotection, elicited by ischaemia/reperfusion of the limbs, was abolished when DVMN neurones transduced to express AlstR were silenced by selective ligand allatostatin or in conditions of systemic muscarinic receptor blockade with atropine. In the absence of remote ischaemia/reperfusion, optogenetic activation of DVMN neurones transduced to express ChIEF reduced infarct size, mimicking the effect of RPc. CONCLUSION: These data indicate a crucial dependence of RPc cardioprotection against ischaemia/reperfusion injury upon the activity of a distinct population of vagal pre-ganglionic neurones

    Origins of the vagal drive controlling left ventricular contractility

    Get PDF
    The strength, functional significance and origins of direct parasympathetic innervation of the left ventricle (LV) remain controversial. In the present study we used an anaesthetized rat model to first confirm the presence of tonic inhibitory vagal influence on LV inotropy. Using genetic neuronal targeting and functional neuroanatomical mapping we tested the hypothesis that parasympathetic control of LV contractility is provided by vagal preganglionic neurones located in the dorsal motor nucleus (DVMN). It was found that under systemic β-adrenoceptor blockade (atenolol) combined with spinal cord (C1) transection (to remove sympathetic influences), intravenous administration of atropine increases LV contractility in rats anaesthetized with urethane, but not in animals anaesthetized with pentobarbital. Increased LV contractility in rats anaesthetized with urethane was also observed when DVMN neurones targeted bilaterally to express an inhibitory Drosophila allatostatin receptor were silenced by application of an insect peptide allatostatin. Microinjections of glutamate and muscimol to activate or inhibit neuronal cell bodies in distinct locations along the rostro-caudal extent of the left and right DVMN revealed that vagal preganglionic neurones which have an impact on LV contractility are located in the caudal region of the left DVMN. Changes in LV contractility were only observed when this subpopulation of DVMN neurones was activated or inhibited. These data confirm the existence of a tonic inhibitory muscarinic influence on LV contractility. Activity of a subpopulation of DVMN neurones provides functionally significant parasympathetic control of LV contractile function. This article is protected by copyright. All rights reserved

    Immediate and sustained increases in the activity of vagal preganglionic neurons during exercise and after exercise training.

    Get PDF
    AIMS: The brain controls the heart by dynamic recruitment and withdrawal of cardiac parasympathetic (vagal) and sympathetic activity. Autonomic control is essential for the development of cardiovascular responses during exercise, however, the patterns of changes in the activity of the two autonomic limbs, and their functional interactions in orchestrating physiological responses during exercise, are not fully understood. The aim of this study was to characterize changes in vagal parasympathetic drive in response to exercise and exercise training by directly recording the electrical activity of vagal preganglionic neurons in experimental animals (rats). METHODS AND RESULTS: Single unit recordings were made using carbon-fibre microelectrodes from the populations of vagal preganglionic neurons of the nucleus ambiguus (NA) and the dorsal vagal motor nucleus of the brainstem. It was found that (i) vagal preganglionic neurons of the NA and the dorsal vagal motor nucleus are strongly activated during bouts of acute exercise, and (ii) exercise training markedly increases the resting activity of both populations of vagal preganglionic neurons and augments the excitatory responses of NA neurons during exercise. CONCLUSIONS: These data show that central vagal drive increases during exercise and provide the first direct neurophysiological evidence that exercise training increases vagal tone. The data argue against the notion of exercise-induced central vagal withdrawal during exercise. We propose that robust increases in the activity of vagal preganglionic neurons during bouts of exercise underlie activity-dependent plasticity, leading to higher resting vagal tone that confers multiple health benefits associated with regular exercise

    Metabolically induced intracellular pH changes activate mitophagy, autophagy, and cell protection in familial forms of Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a progressive neurodegenerative disorder induced by the loss of dopaminergic neurons in midbrain. The mechanism of neurodegeneration is associated with aggregation of misfolded proteins, oxidative stress, and mitochondrial dysfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of the cytosol can activate mitophagy and autophagy. Here, we used sodium pyruvate and sodium lactate to induce changes in intracellular pH in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-synuclein triplication, A53T). We have found that both lactate and pyruvate in millimolar concentrations can induce a short-time acidification of the cytosol in these cells. This induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, application of lactate to acute brain slices of WT and Pink1 KO mice also induced a reduction of pH in neurons and astrocytes that increased the level of mitophagy. Thus, acidification of the cytosol by compounds, which play an important role in cell metabolism, can also activate mitophagy and autophagy and protect cells in the familial form of PD

    Cardiac vagal preganglionic neurones: An update

    Get PDF
    The autonomic nervous system controls the heart by dynamic recruitment and withdrawal of cardiac parasympathetic and sympathetic activities. These activities are generated by groups of sympathoexcitatory and vagal preganglionic neurones residing in a close proximity to each other within well-defined structures of the brainstem. This short essay provides a general overview and an update on the latest developments in our understanding of the central nervous origins and functional significance of cardiac vagal tone. Significant experimental evidence suggests that distinct groups of cardiac vagal preganglionic neurones with different patterns of activity control nodal tissue (controlling the heart rate and atrioventricular conductance) and the ventricular myocardium (modulating its contractility and excitability)
    corecore