25 research outputs found

    Whole genome sequence-based molecular characterization of blood isolates of carbapenem-resistant Enterobacter cloacae complex from ICU patients in Kolkata, India, during 2017–2022: emergence of phylogenetically heterogeneous Enterobacter hormaechei subsp. xiangfangensis

    No full text
    ABSTRACTBlood-borne infections caused by the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) are major public threats with respect to the challenges encountered during treatment. This study describes the whole genome sequencing-based molecular characteristics of blood isolates (n = 70) of CR-ECC from patients admitted to the intensive care unit of tertiary care hospitals in Kolkata, India, during 2017–2022 with respect to species identification, antimicrobial resistance (AMR) profiling, mechanism of drug resistance, and molecular subtypes. Vitek2 MALDI and species-specific PCR identified Enterobacter hormaechei subsp. xiangfangensis (47.14%) as the emerging CR-ECC subspecies in Kolkata. The predominating carbapenemase and extended-spectrum β-lactamase genes found were blaNDM-1 (51.42%) and blaCTX-M-15 (27%), respectively. Besides, blaNDM-4, blaNDM-5, blaNDM-7, blaCMH-3, blaSFO-1, blaOXA-181, blaOXA-232, blaKPC-3, and blaDHA-7 genes were also detected, which were not previously reported from India. A multitude of Class 1 integrons (including In180, In4874, In4887, and In4888, which were novel) and plasmid replicon types (IncFIB, IncFII, IncX3, IncHI1-HI2, IncC, and IncR) involved in AMR dissemination were identified. Reverse transcription-PCR and western blot revealed that carbapenem resistance in non-carbapenemase-producing CR-ECC isolates was contributed by elevated levels of ampC, overexpression of acrAB, and loss of ompF. A total of 30 distinct sequence types (STs) were ascertained by multi-locus sequence typing; of which, ST2011, ST2018, ST2055, ST2721, and ST2722 were novel STs. Pulsed-field gel electrophoresis analysis showed heterogeneity (69 pulsotypes with a similarity coefficient of 48.40%) among the circulating isolates, suggesting multiple reservoirs of infections in humans. Phylogenetically and genetically diverse CR-ECC with multiple AMR mechanisms mandates close monitoring of nosocomial infections caused by these isolates to forestall the transmission and dissemination of AMR.IMPORTANCEThe emergence and extensive dissemination of the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) have positioned it as a critical nosocomial global pathogen. The dearth of a comprehensive molecular study pertaining to CR-ECC necessitated this study, which is the first of its kind from India. Characterization of blood isolates of CR-ECC over the last 6 years revealed Enterobacter hormaechei subsp. xiangfangensis as the most prevalent subsp., exhibiting resistance to almost all antibiotics currently in use and harboring diverse transmissible carbapenemase genes. Besides the predominating blaNDM-1 and blaCTX-M-15, we document diverse carbapenemase and AmpC genes, such as blaNDM-4, blaNDM-7, blaOXA-181, blaOXA-232, blaKPC-3, blaCMH-3, blaSFO-1, and blaDHA-7, in CR-ECC, which were not previously reported from India. Furthermore, novel integrons and sequence types were identified. Our findings emphasize the need for strengthened vigilance for molecular epidemiological surveillance of CR-ECC due to the presence of epidemic clones with a phylogenetically diverse and wide array of antimicrobial resistance genes in vulnerable populations

    Primer list for virulence gene.

    No full text
    BackgroundThe primary aim of this study was to investigate the occurrence, characteristics, and antimicrobial resistance patterns of various Shigella serogroups isolated from patients with acute diarrhea of the Infectious Diseases Hospital in Kolkata from 2011–2019.Principal findingsDuring the study period, Shigella isolates were tested for their serogroups, antibiotic resistance pattern and virulence gene profiles. A total of 5.8% of Shigella spp. were isolated, among which S. flexneri (76.1%) was the highest, followed by S. sonnei (18.7%), S. boydii (3.4%), and S. dysenteriae (1.8%). Antimicrobial resistance against nalidixic acid was higher in almost all the Shigella isolates, while the resistance to β-lactamases, fluoroquinolones, tetracycline, and chloramphenicol diverged. The occurrence of multidrug resistance was found to be linked with various genes encoding drug-resistance, multiple mutations in the topoisomerase genes, and mobile genetic elements. All the isolates were positive for the invasion plasmid antigen H gene (ipaH). Dendrogram analysis of the plasmid and pulsed-field electrophoresis (PFGE) profiles revealed 70–80% clonal similarity among each Shigella serotype.ConclusionThis comprehensive long-term surveillance report highlights the clonal diversity of clinical Shigella strains circulating in Kolkata, India, and shows alarming resistance trends towards recommended antibiotics. The elucidation of this study’s outcome is helpful not only in identifying emerging antimicrobial resistance patterns of Shigella spp. but also in developing treatment guidelines appropriate for this region.</div
    corecore