4 research outputs found

    Unveiling the Impact of Morphine on Tamoxifen Metabolism in Mice in vivo

    Get PDF
    Background- Tamoxifen is used to treat breast cancer and cancer recurrences. After administration, tamoxifen is converted into two more potent antitumor compounds, 4OH-tamoxifen and endoxifen by the CYP3A4/5 and 2D6 enzymes in human. These active compounds are inactivated by the same UDP-glucuronosyltransferases isoforms as those involved in the metabolism of morphine. Importantly, cancer-associated pain can be treated with morphine, and the common metabolic pathway of morphine and tamoxifen suggests potential clinically relevant interactions. Methods- Mouse liver microsomes were used to determine the impact of morphine on 4OH-tamoxifen metabolism in vitro. For in vivo experiments, female mice were first injected with tamoxifen alone and then with tamoxifen and morphine. Blood was collected, and LC-MS/MS was used to quantify tamoxifen, 4OH-tamoxifen, N-desmethyltamoxifen, endoxifen, 4OH-tamoxifen-glucuronide and endoxifen-glucuronide. Results- In vitro, we found increased Km values for the production of 4OH-tamoxifen-glucuronide in the presence of morphine, suggesting an inhibitory effect on 4OH-tamoxifen glucuronidation. Conversely, in vivo morphine treatment decreased 4OH-tamoxifen levels in the blood while dramatically increasing the formation of inactive metabolites 4OH-tamoxifen-glucuronide and endoxifen-glucuronide. Conclusions- Our findings emphasize the need for caution when extrapolating results from in vitro metabolic assays to in vivo drug metabolism interactions. Importantly, morphine strongly impacts tamoxifen metabolism in mice. It suggests that tamoxifen efficiency could be reduced when both drugs are co-administered in a clinical setting, e.g. to relieve pain in breast cancer patients. Further studies are needed to assess the potential for tamoxifen-morphine metabolic interactions in humans

    Long-lasting spinal oxytocin analgesia is ensured by the stimulation of allopregnanolone synthesis which potentiates GABA(A) receptor-mediated synaptic inhibition.

    Get PDF
    Hypothalamospinal control of spinal pain processing by oxytocin (OT) has received a lot of attention in recent years because of its potency to reduce pain symptoms in inflammatory and neuropathic conditions. However, cellular and molecular mechanisms underlying OT spinal antinociception are still poorly understood. In this study, we used biochemical, electrophysiological, and behavioral approaches to demonstrate that OT levels are elevated in the spinal cord of rats exhibiting pain symptoms, 24 h after the induction of inflammation with an intraplantar injection of λ-carrageenan. Using a selective OT receptor antagonist, we demonstrate that this elevated OT content is responsible for a tonic analgesia exerted on both mechanical and thermal modalities. This phenomenon appeared to be mediated by an OT receptor-mediated stimulation of neurosteroidogenesis, which leads to an increase in GABA(A) receptor-mediated synaptic inhibition in lamina II spinal cord neurons. We also provide evidence that this novel mechanism of OT-mediated spinal antinociception may be controlled by extracellular signal-related protein kinases, ERK1/2, after OT receptor activation. The oxytocinergic inhibitory control of spinal pain processing is emerging as an interesting target for future therapies since it recruits several molecular mechanisms, which are likely to exert a long-lasting analgesia through nongenomic and possibly genomic effects.journal articleresearch support, non-u.s. gov't2013 Oct 16importe

    La Russia e il Caucaso: alle origini di un problema insoluto

    Get PDF
    Interactions between cancer cells and stromal cells in the tumour microenvironment play a key role in the control of invasiveness, metastasis and angiogenesis. Macrophages display a range of activation states in specific pathological contexts and alternatively activated (M2) macrophages can promote tumour aggressiveness. Opioids are able to modulate tumour growth and metastasis. We tested whether morphine modulates the activation of macrophages induced by (i) interleukin-4 (IL-4), the prototypical M2 polarization-inducing cytokine, or (ii) coculture with breast cancer cells. We showed that IL-4 causes increased MMP-9 production and expression of the alternative activation markers arginase-1 and MRC-1. Morphine prevented IL-4-induced increase in MMP-9 in a naloxone- and methylnaltrexone-reversible fashion. Morphine also prevented IL-4-elicited alternative activation of RAW264.7 macrophages. Expression of MMP-9 and arginase-1 were increased when RAW264.7 were subjected to paracrine activation by 4T1 cells, and this effect was prevented by morphine via an opioid receptor-mediated mechanism. Morphine further decreased 4T1 breast cancer cell invasion elicited by co-culture with RAW264.7. Reduction of MMP-9 expression and alternative activation of macrophages by morphine was confirmed using mouse bone marrow-derived macrophages. Taken together, our results indicate that morphine may modulate tumour aggressiveness by regulating macrophage protease production and M2 polarization within the tumour microenvironment.journal articleresearch support, non-u.s. gov't2015 Jun 162015 06 16importe
    corecore