20 research outputs found

    The effect of food and formulation on the population pharmacokinetics of cholesteryl ester transferase protein inhibitor DRL-17822 in healthy male volunteers

    Get PDF
    We aimed to characterise the population pharmacokinetics of cholesteryl ester transferase protein inhibitor DRL-17822 in healthy males and explore the effect of food and formulation on the oral absorption of DRL-17822 in 4 phase I studies. DRL-17822 was dosed orally (2-1000 mg) in 2 different drug formulations (nanocrystal formulation and amorphous solid dispersion formulation) after either an overnight fast, or a low-fat, continental or high-fat breakfast. A 2-compartment model with 6 transit absorption compartments best characterised the data. Additionally, a strong interaction of food and formulation on bioavailability was observed and parsimoniously characterised in the model by binning combinations of food state and formulation with similar bio-availabilities. The final model adequately characterised the pharmacokinetic data of DRL-17822 in healthy males including the complex interaction of food and drug formulation. The amorphous solid dispersion formulation has a lower food effect on bioavailability compared with the nanocrystal formulation.Pharmacolog

    Dosing Recommendations for Vancomycin in Children and Adolescents with Varying Levels of Obesity and Renal Dysfunction: a Population Pharmacokinetic Study in 1892 Children Aged 1–18 Years

    Get PDF
    Vancomycin is an effective but potentially nephrotoxic antibiotic commonly used for severe infections. Dosing guidelines for vancomycin in obese children and adolescents with or without renal impairment are currently lacking. This study describes the pharmacokinetics of vancomycin in a large pediatric cohort with varying degrees of obesity and renal function to design practical dosing guidelines for this population. A multi-center retrospective population pharmacokinetic study was conducted using data from patients aged 1−18 years who received \u3e1 dose of vancomycin and had ≥1 vancomycin concentration measured between January 2006 and December 2012. Besides pharmacokinetic data, age, gender, body weight, creatinine clearance (CLcr, bedside Schwartz equation), ward, race, and neutropenic status were collected. Population pharmacokinetic analysis and simulations were performed using NONMEM7.4. A total of 1892 patients (5524 samples) were included, with total body weight (TBW) ranging 6−188 kg (1344 normal weight, 247 overweight, and 301 obese patients) and CLcr down to 8.6 mL/min/1.73 m2. The two-compartment model, with clearance (CL) significantly increasing with TBW and CLcr, central and peripheral volume of distribution and inter-compartmental clearance increasing with TBW, performed well for all age, weight, and renal function ranges. A dosing guideline is proposed that integrates body weight and CLcr resulting in effective and safe exposures across all ages, body weight, and renal functions in the pediatric population. We have characterized the full pharmacokinetic profile of vancomycin in obese children and adolescents aged 1−18 years and propose a practical dosing guideline that integrates both body weight and renal function

    Quantifying the Pharmacodynamics of Morphine in the Treatment of Postoperative Pain in Preverbal Children

    Get PDF
    While the pharmacokinetics of morphine in children have been studied extensively, little is known about the pharmacodynamics of morphine in this population. Here, we quantified the concentration‐effect relationship of morphine for postoperative pain in preverbal children between 0 and 3 years of age. For this, we applied item response theory modeling in the pharmacokinetic/pharmacodynamic analysis of COMFORT‐Behavior (COMFORT‐B) scale data from 2 previous clinical studies. In the model, we identified a sigmoid maximal efficacy model for the effect of morphine and found that in 26% of children, increasing morphine concentrations were not associated with lower pain scores (nonresponders to morphine up‐titration). In responders to morphine up‐titration, the COMFORT‐B score slowly decreases with increasing morphine concentrations at morphine concentrations >20 ng/mL. In nonresponding children, no decrease in COMFORT‐B score is expected. In general, lower baseline COMFORT‐B scores (2.1 points on average) in younger children (postnatal age 10 days. These findings support a dosing regimen previously suggested by Krekels et al, which would put >95% of patients within this morphine target concentration range at steady state. Our modeling approach provides a promising platform for pharmacodynamic research of analgesics and sedatives in children

    Population pharmacokinetics of vancomycin in obesity: Finding the optimal dose for (morbidly) obese individuals

    Get PDF
    Aims: For vancomycin treatment in obese patients, there is no consensus on the optimal dose that will lead to the pharmacodynamic target (area under the curve 400–700 mg h L−1). This prospective study quantifies vancomycin pharmacokinetics in morbidly obese and nonobese individuals, in order to guide vancomycin dosing in the obese. Methods: Morbidly obese individuals (n = 20) undergoing bariatric surgery and nonobese healthy volunteers (n = 8; total body weight [TBW] 60.0–234.6 kg) received a single vancomycin dose (obese: 12.5 mg kg−1, maximum 2500 mg; nonobese: 1000 mg) with plasma concentrations measured over 48 h (11–13 samples per individual). Modelling, internal validation, external validation using previously published data and simulations (n = 10.000 individuals, TBW 60–230 kg) were performed using NONMEM. Results: In a 3-compartment model, peripheral volume of distribution and clearance increased with TBW (both p  90% target attainment (area under the curve > 400 mg h L−1) in individuals up to 200 kg, with corresponding trough concentrations of 5.7–14.6 mg L−1 (twice daily dosing). For continuous infusion, a loading dose of 1500 mg is required for s

    Exploring the Relationship Between Morphine Concentration and Oversedation in Children After Cardiac Surgery

    Get PDF
    Titrating analgesic and sedative drugs in pediatric intensive care remains a challenge for caregivers due to the lack of pharmacodynamic knowledge in this population. The aim of the current study is to explore the concentration-effect relationship for morphine-associated oversedation after c

    Towards personalized treatment of pain using a quantitative systems pharmacology approach

    Get PDF
    Pain is a complex biopsychosocial phenomenon of which the intensity, location and duration depends on various underlying components. Treatment of pain is associated with considerable inter-individual variability, and as such, requires a personalized approach. However, a priori prediction of optimal analgesic treatment for individual patients is still challenging. Another challenge is the assessment and treatment of pain in patients unable to self-report pain. In this mini-review, we first provide a brief overview of the various components underlying pain, and their associated biomarkers. These include clinical, psychosocial, neurophysiological, and biochemical components. We then discuss the use of empirical and mechanism-based pharmacokinetic-pharmacodynamic modelling to support personalized treatment of pain. Finally, we propose how these concepts can be extended to a quantitative systems pharmacology (QSP) approach that integrates the components of clinical pain and treatment response. This integrative approach can support predictions of optimal pharmacotherapy of pain, compared with approaches that focus on single components of pain. Moreover, combination of QSP modelling with state-of-the-art metabolomics approaches may offer unique possibilities to identify novel pain biomarkers. Such biomarkers could support both the personalized treatment of pain and translational drug development of novel analgesic agents. In conclusion, a QSP approach will likely improve our ability to predict pain and treatment response, paving the way for personalized treatment of pain

    Monte Carlo simulations of the clinical benefits from therapeutic drug monitoring of sunitinib in patients with gastrointestinal stromal tumours

    No full text
    Therapeutic drug monitoring (TDM) is being considered as a tool to individualise sunitinib treatment of gastrointestinal stromal tumours (GIST). Here, we used computer simulations to assess the expected impact of sunitinib TDM on the clinical outcome of patients with GIST.Monte Carlo simulations were performed in R, based on previously published pharmacokinetic-pharmacodynamic models. Clinical trials with dose-limiting toxicity and patient dropout were simulated to establish the study size required to obtain sufficient statistical power for comparison of TDM-guided and fixed dosing.The simulations revealed that TDM might increase time to tumour progression by about 1-2 months (15-31 %) in eligible patients. However, the number of subjects required for a sufficient statistical power to quantify clinical benefit of TDM guided is likely to be prohibitively high (> 1000).Although data from randomised clinical trials on the clinical impact of sunitinib TDM are lacking, our findings support implementation of sunitinib TDM in clinical practice. For rare cancers with well-defined exposure-response relationships, modelling and simulation might allow the optimisation of dosing strategies when clinical trials cannot be performed due to low number of patients

    Towards Evidence-Based Weaning

    No full text
    For the management of iatrogenic withdrawal syndrome (IWS) in children, a quantitative understanding of the dynamics of IWS of commonly used opioids and sedatives is lacking. Here, we introduce a new mechanism-based pharmacokinetic-pharmacodynamic (PKPD) modeling approach for studying IWS in pediatric clinical datasets. One thousand seven hundred eighty-two NRSwithdrawal scores of IWS severity were analyzed, which were collected from 81 children (age range: 1 month–18 years) that received opioids or sedatives by continuous infusion for 5 days or more. These data were successfully fitted with a PKPD mod

    Towards Evidence-Based Weaning

    No full text
    For the management of iatrogenic withdrawal syndrome (IWS) in children, a quantitative understanding of the dynamics of IWS of commonly used opioids and sedatives is lacking. Here, we introduce a new mechanism-based pharmacokinetic-pharmacodynamic (PKPD) modeling approach for studying IWS in pediatric clinical datasets. One thousand seven hundred eighty-two NRSwithdrawal scores of IWS severity were analyzed, which were collected from 81 children (age range: 1 month–18 years) that received opioids or sedatives by continuous infusion for 5 days or more. These data were successfully fitted with a PKPD mod
    corecore