3 research outputs found

    HIV-1 Nef Interferes with Host Cell Motility by Deregulation of Cofilin

    Get PDF
    SummaryHIV-1 Nef is a key factor in AIDS pathogenesis. Here, we report that Nef potently inhibits motility of fibroblasts and chemotaxis of HIV-1-infected primary human T lymphocytes toward the chemokines SDF-1α, CCL-19, and CCL-21 ex vivo. Furthermore, Nef inhibits guided motility of zebrafish primordial germ cells toward endogenous SDF-1a in vivo. These migration defects result from Nef-mediated inhibition of the actin remodeling normally triggered by migratory stimuli. Nef strongly induces phosphorylation of cofilin, inactivating this evolutionarily conserved actin-depolymerizing factor that promotes cell motility when unphosphorylated. Nef-dependent cofilin deregulation requires association of Nef with the cellular kinase Pak2. Disruption of Nef-Pak2 association restores the cofilin phosphorylation levels and actin remodeling that facilitate cell motility. We conclude that HIV-1 Nef alters Pak2 function, which directly or indirectly inactivates cofilin, thereby restricting migration of infected T lymphocytes as part of a strategy to optimize immune evasion and HIV-1 replication

    LARG and mDia1 Link Gα12/13 to Cell Polarity and Microtubule Dynamics

    No full text
    Regulation of cell polarity is a process observed in all cells. During directed migration, cells orientate their microtubule cytoskeleton and the microtubule-organizing-center (MTOC), which involves integrins and downstream Cdc42 and glycogen synthase kinase-3β activity. However, the contribution of G protein-coupled receptor signal transduction for MTOC polarity is less well understood. Here, we report that the heterotrimeric Gα12 and Gα13 proteins are necessary for MTOC polarity and microtubule dynamics based on studies using Gα12/13-deficient mouse embryonic fibroblasts. Cell polarization involves the Gα12/13-interacting leukemia-associated RhoGEF (LARG) and the actin-nucleating diaphanous formin mDia1. Interestingly, LARG associates with pericentrin and localizes to the MTOC and along microtubule tracks. We propose that Gα12/13 proteins exert essential functions linking extracellular signals to microtubule dynamics and cell polarity via RhoGEF and formin activity
    corecore