15,332 research outputs found
Local magnetic divertor for control of the plasma-limiter interaction in a tokamak
An experiment is described in which plasma flow to a tokamak limiter is controlled through the
use of a local toroidal divertor coil mounted inside the limiter itself. This coil produces a local
perturbed field B_C approximately equal to the local unperturbed toroidal field B_T ≃ 3 kG, such
that when B_C adds to B_T the field lines move into the limiter and the local plasma flow to it
increases by a factor as great as 1.6, and when B_C subtracts from B_T the field lines move away
from the limiter and the local plasma flow to it decreases by as much as a factor of 4. A simple
theoretical model is used to interpret these results. Since these changes occur without significantly
affecting global plasma confinement, such a control scheme may be useful for optimizing the
performance of pumped limiters
Einstein Radii from Binary Lensing Events
We show that the Einstein ring radius and transverse speed of a lens
projected on the source plane, and , can be
determined from the light curve of a binary-source event, followed by the
spectroscopic determination of the orbital elements of the source stars. The
determination makes use of the same principle that allows one to measure the
Einstein ring radii from finite-source effects. For the case when the orbital
period of the source stars is much longer than the Einstein time scale, , there exists a single two-fold degeneracy in determining
. However, when the degeneracy can
often be broken by making use of the binary-source system's orbital motion.
%Once , and thus are determined, one can
%distinguish self-lensing events in the Large Magellanic Cloud %from Galactic
halo events. For an identifiable 8\% of all lensing events seen toward the
Large Magellanic Cloud (LMC), one can unambiguously determine whether the
lenses are Galactic, or whether they lie in the LMC itself. The required
observations can be made after the event is over and could be carried out for
the events seen by Alcock et al.\ and Aubourg et al.. In addition, we
propose to include eclipsing binaries as sources for gravitational lensing
experiments.Comment: 18 pages, revised version, submitted to Ap
The Addition Spectrum of a Lateral Dot from Coulomb and Spin Blockade Spectroscopy
Transport measurements are presented on a class of electrostatically defined
lateral dots within a high mobility two dimensional electron gas (2DEG). The
new design allows Coulomb Blockade(CB) measurements to be performed on a single
lateral dot containing 0, 1 to over 50 electrons. The CB measurements are
enhanced by the spin polarized injection from and into 2DEG magnetic edge
states. This combines the measurement of charge with the measurement of spin
through spin blockade spectroscopy. The results of Coulomb and spin blockade
spectroscopy for first 45 electrons enable us to construct the addition
spectrum of a lateral device. We also demonstrate that a lateral dot containing
a single electron is an effective local probe of a 2DEG edge.Comment: 4 pages, 4 figures submitted to Physical Review
Microlens Parallaxes with SIRTF
The Space Infrared Telescope Facility (SIRTF) will drift away from the Earth
at about 0.1 AU/yr. Microlensing events will therefore have different
characteristics as seen from the satellite and the Earth. From the difference,
it is possible in principle to measure v-tilde, the transverse velocity of the
lens projected onto the observer plane. Since v-tilde has very different values
for different populations (disk, halo, Large Magellanic Cloud), such
measurements could help identify the location, and hence the nature, of the
lenses. I show that the method previously developed by Gould for measuring such
satellite parallaxes fails completely in the case of SIRTF: it is overwhelmed
by degeneracies which arise from fact that the Earth and satellite observations
are in different band passes. I develop a new method which allows for
observations in different band passes and yet removes all degeneracies. The
method combines a purely ground-based measurement of the "parallax asymmetry"
with a measurement of the delay between the time the event peaks at the Earth
and satellite. In effect, the parallax asymmetry determines the component of
v-tilde in the Earth-Sun direction, while the delay time measures the component
of v-tilde in the direction of the Earth's orbit.Comment: 21 pages plus 3 figure
- …