290 research outputs found
What do young athletes implicitly understand about psychological skills?
One reason sport psychologists teach psychological skills is to enhance performance in sport; but the value of psychological skills for young athletes is questionable because of the qualitative and quantitative differences between children and adults in their understanding of abstract concepts such as mental skills. To teach these skills effectively to young athletes, sport psychologists need to appreciate what young athletes implicitly understand about such skills because maturational (e.g., cognitive, social) and environmental (e.g., coaches) factors can influence the progressive development of children and youth. In the present qualitative study, we explored young athletes’ (aged 10–15 years) understanding of four basic psychological skills: goal setting, mental imagery, self-talk, and relaxation. Young athletes (n = 118: 75 males and 43 females) completed an open-ended questionnaire to report their understanding of these four basic psychological skills. Compared with the older youth athletes, the younger youth athletes were less able to explain the meaning of each psychological skill. Goal setting and mental imagery were better understood than self-talk and relaxation. Based on these findings, sport psychologists should consider adapting interventions and psychoeducational programs to match young athletes’ age and developmental level
Superconducting correlations in metallic nanoparticles: exact solution of the BCS model by the algebraic Bethe ansatz
Superconducting pairing of electrons in nanoscale metallic particles with
discrete energy levels and a fixed number of electrons is described by the
reduced BCS model Hamiltonian. We show that this model is integrable by the
algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators,
integrals of motion, and norms of wave functions are obtained. Furthermore, the
quantum inverse problem is solved, meaning that form factors and correlation
functions can be explicitly evaluated. Closed form expressions are given for
the form factors that describe superconducting pairing.Comment: revised version, 5 pages, revtex, no figure
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
A cross-institutional analysis of the effects of broadening trainee professional development on research productivity
PhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and nonprofit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths. The National Institutes of Health (NIH) funded academic institutions to design innovative programming to enable this professional development through a mechanism known as Broadening Experiences in Scientific Training (BEST). Programming at the NIH BEST awardee institutions included career panels, skill-building workshops, job search workshops, site visits, and internships. Because doctoral training is lengthy and requires focused attention on dissertation research, an initial concern was that students participating in additional complementary training activities might exhibit an increased time to degree or diminished research productivity. Metrics were analyzed from 10 NIH BEST awardee institutions to address this concern, using time to degree and publication records as measures of efficiency and productivity. Comparing doctoral students who participated to those who did not, results revealed that across these diverse academic institutions, there were no differences in time to degree or manuscript output. Our findings support the policy that doctoral students should participate in career and professional development opportunities that are intended to prepare them for a variety of diverse and important careers in the workforce
Updated Nucleosynthesis Constraints on Unstable Relic Particles
We revisit the upper limits on the abundance of unstable massive relic
particles provided by the success of Big-Bang Nucleosynthesis calculations. We
use the cosmic microwave background data to constrain the baryon-to-photon
ratio, and incorporate an extensively updated compilation of cross sections
into a new calculation of the network of reactions induced by electromagnetic
showers that create and destroy the light elements deuterium, he3, he4, li6 and
li7. We derive analytic approximations that complement and check the full
numerical calculations. Considerations of the abundances of he4 and li6 exclude
exceptional regions of parameter space that would otherwise have been permitted
by deuterium alone. We illustrate our results by applying them to massive
gravitinos. If they weigh ~100 GeV, their primordial abundance should have been
below about 10^{-13} of the total entropy. This would imply an upper limit on
the reheating temperature of a few times 10^7 GeV, which could be a potential
difficulty for some models of inflation. We discuss possible ways of evading
this problem.Comment: 40 pages LaTeX, 18 eps figure
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
- …