5 research outputs found

    Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids

    Get PDF
    BACKGROUND: Genetic improvement of shrub willow (Salix), a perennial energy crop common to temperate climates, has led to the development of new cultivars with improved biomass yield, pest and disease resistance, and biomass composition suitable for bioenergy applications. These improvements have largely been associated with species hybridization, yet little is known about the genetic mechanisms responsible for improved yield and performance of certain willow species hybrids. RESULTS: The top performing genotypes in this study, representing advanced pedigrees compared with those in previous studies, were mostly triploid in nature and outperformed current commercial cultivars. Of the genotypes studied, the diploids had the lowest mean yield of 8.29 oven dry Mg ha(−1) yr(−1), while triploids yielded 12.65 Mg ha(−1) yr(−1), with the top five producing over 16 Mg ha(−1) yr(−1). Triploids had high stem area and height across all three years of growth in addition to greatest specific gravity. The lowest specific gravity was observed among the tetraploid genotypes. Height was the early trait most correlated with and the best predictor of third-year yield. CONCLUSIONS: These results establish a paradigm for future breeding and improvement of Salix bioenergy crops based on the development of triploid species hybrids. Stem height and total stem area are effective traits for early prediction of relative yield performance

    High-Resolution Melting Analysis Enables Efficient Detection and Differentiation of Two Boxwood Blight Pathogens by qPCR Assays

    No full text
    Boxwood blight is a devastating disease caused by the fungal pathogens Calonectria henricotiae (Che) and C. pseudonaviculata (Cps). Identification and detection of these pathogens from infected plant material could play a significant role in breeding and selection of resistant cultivars and development of disease management strategies in the ornamental nursery industry. We designed a simple, single-tube method for extraction of PCR-amplifiable DNA from boxwood leaves and cultures of the Calonectria pathogens. Previously developed fungal-specific primers based on histone and calmodulin regions were used to detect and distinguish between Che and Cps using real-time PCR and high-resolution melting (HRM) analysis, with discernable melting temperature differences of 0.5°C between amplified products. Here, we describe a single-tube acetone-based DNA extraction method and qPCR-HRM assay targeting single nucleotide polymorphisms within the calmodulin and histone H3 DNA regions as a fast and highly sensitive molecular method to detect and differentiate between Che and Cps species directly from plant tissue. [Graphic: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license
    corecore